ADAPTIVE VARIANCE FUNCTION ESTIMATION IN HETEROSCEDASTIC NONPARAMETRIC REGRESSION

被引:44
作者
Cai, T. Tony [1 ]
Wang, Lie [1 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
关键词
Adaptive estimation; nonparametric regression; thresholding; variance function estimation; wavelets;
D O I
10.1214/07-AOS509
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a wavelet thresholding approach to adaptive variance function estimation in heteroscedastic nonparametric regression. A data-driven estimator is constructed by applying wavelet thresholding to the squared first-order differences of the observations. We show that the variance function estimator is nearly optimally adaptive to the smoothness of both the mean and variance functions. The estimator is shown to achieve the optimal adaptive rate of convergence under the pointwise squared error simultaneously over a range of smoothness classes. The estimator is also adaptively within a logarithmic factor of the minimax risk under the global mean integrated squared error over a collection of spatially inhomogeneous function classes. Numerical implementation and simulation results are also discussed.
引用
收藏
页码:2025 / 2054
页数:30
相关论文
共 23 条
[1]  
[Anonymous], 1993, Ten Lectures of Wavelets
[2]  
Berger J, 1976, J MULTIVARIATE ANAL, V4, P642
[3]   Variance estimation in nonparametric regression via the difference sequence method [J].
Brown, Lawrence D. ;
Levine, M. .
ANNALS OF STATISTICS, 2007, 35 (05) :2219-2232
[4]  
Brown LD, 1996, ANN STAT, V24, P2524
[5]  
CAI T, 2007, ADAPTIVE VARIANCE FU
[6]  
Cai T.T., 2011, Sankhya Ser. B, V63, P127
[7]  
Cai TT, 2002, STAT SINICA, V12, P1241
[8]   Adaptive wavelet estimation: A block thresholding and oracle inequality approach [J].
Cai, TT .
ANNALS OF STATISTICS, 1999, 27 (03) :898-924
[9]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[10]  
DONOHO DL, 1995, J ROY STAT SOC B MET, V57, P301