Locality of conical intersections in semiconductor nanomaterials

被引:5
作者
Levine, Benjamin G. [1 ]
Peng, Wei-Tao [1 ]
Esch, Michael P. [1 ]
机构
[1] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; FULL CONFIGURATION-INTERACTION; 2ND-ORDER PERTURBATION-THEORY; POTENTIAL-ENERGY SURFACES; QUANTUM-CHEMISTRY; NONRADIATIVE RECOMBINATION; SEMICLASSICAL SIMULATION; NATURAL ORBITALS; POROUS SILICON; DANGLING BONDS;
D O I
10.1039/c9cp01584a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A predictive theory connecting atomic structure to the rate of recombination would enable the rational design of semiconductor nanomaterials for optoelectronic applications. Recently our group has demonstrated that the theoretical study of conical intersections can serve this purpose. Here we review recent work in this area, focusing on the thesis that low-energy conical intersections in nanomaterials share a common feature: locality. We define a conical intersection as local if (a) the intersecting states differ by the excitation of an electron between spatially local orbitals, and (b) the intersection is accessed when the energies of these orbitals are tuned by local distortions of the geometry. After illustrating the locality of the conical intersection responsible for recombination at dangling bond defects in silicon, we demonstrate the locality of lowenergy conical intersections in cases where locality may be a surprise. First, we demonstrate the locality of low-energy self-trapped conical intersections in a pristine silicon nanocrystal, which has no defects that one would expect to serve as the center of a local intersection. Second, we demonstrate that the lowest energy intersection in a silicon system with two neighboring dangling bond defects localizes to a single defect site. We discuss the profound implications of locality for predicting the rate of recombination and suggest that the locality of intersections could be exploited in the experimental study of recombination, where spectroscopic studies of molecular models of defects could provide new insights.
引用
收藏
页码:10870 / 10878
页数:9
相关论文
共 94 条
[1]   Natural orbitals as substitutes for optimized orbitals in complete active space wavefunctions [J].
Abrams, ML ;
Sherrill, CD .
CHEMICAL PHYSICS LETTERS, 2004, 395 (4-6) :227-232
[2]   2ND-ORDER PERTURBATION-THEORY WITH A COMPLETE ACTIVE SPACE SELF-CONSISTENT FIELD REFERENCE FUNCTION [J].
ANDERSSON, K ;
MALMQVIST, PA ;
ROOS, BO .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (02) :1218-1226
[3]   POTENTIAL-ENERGY SURFACES NEAR INTERSECTIONS [J].
ATCHITY, GJ ;
XANTHEAS, SS ;
RUEDENBERG, K .
JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (03) :1862-1876
[4]   Contemporary issues in electron transfer research [J].
Barbara, PF ;
Meyer, TJ ;
Ratner, MA .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13148-13168
[5]   FULL CONFIGURATION-INTERACTION STUDY OF THE IONIC NEUTRAL CURVE CROSSING IN LIF [J].
BAUSCHLICHER, CW ;
LANGHOFF, SR .
JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (07) :4246-4354
[6]   A DIRECT METHOD FOR THE LOCATION OF THE LOWEST ENERGY POINT ON A POTENTIAL SURFACE CROSSING [J].
BEARPARK, MJ ;
ROBB, MA ;
SCHLEGEL, HB .
CHEMICAL PHYSICS LETTERS, 1994, 223 (03) :269-274
[7]   Potential energy surface crossings in organic photochemistry [J].
Bernardi, F ;
Olivucci, M ;
Robb, MA .
CHEMICAL SOCIETY REVIEWS, 1996, 25 (05) :321-&
[9]  
Boles MA, 2016, NAT MATER, V15, P141, DOI [10.1038/NMAT4526, 10.1038/nmat4526]
[10]   Surface dangling bonds are a cause of B-type blinking in Si nanoparticles [J].
Brawand, Nicholas P. ;
Voeroes, Marton ;
Galli, Giulia .
NANOSCALE, 2015, 7 (08) :3737-3744