An AQCQ-Functional Equation in Matrix Normed Spaces

被引:16
作者
Lee, Jung Rye [1 ]
Park, Choonkil [2 ]
Shin, Dong Yun [3 ]
机构
[1] Daejin Univ, Dept Math, Kyeonggi 487711, South Korea
[2] Hanyang Univ, Dept Math, Res Inst Nat Sci, Seoul 133791, South Korea
[3] Univ Seoul, Dept Math, Seoul 130743, South Korea
基金
新加坡国家研究基金会;
关键词
Operator space; Hyers-Ulam stability; Additive-quadratic-cubic-quartic functional equation; ULAM-RASSIAS STABILITY; ADDITIVE MAPPINGS; OPERATOR-SPACES; ALGEBRAS;
D O I
10.1007/s00025-013-0315-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the Hyers-Ulam stability of an additive-quadratic-cubic-quartic functional equation in matrix normed spaces.
引用
收藏
页码:305 / 318
页数:14
相关论文
共 40 条
[1]  
Aczel J., 1989, ENCY MATH APPL, V31
[2]   Some New Results on the Superstability of the Cauchy Equation on Semigroups [J].
Alimohammady, M. ;
Sadeghi, A. .
RESULTS IN MATHEMATICS, 2013, 63 (1-2) :705-712
[3]   A Note on Classical and p-adic Frechet Functional Equations with Restrictions [J].
Almira, J. M. .
RESULTS IN MATHEMATICS, 2013, 63 (1-2) :649-656
[4]  
[Anonymous], 1990, Int. J. Math.
[5]  
[Anonymous], 2009, ADV DIFFER EQU
[6]  
[Anonymous], 1987, Contemp. Math, DOI DOI 10.1090/CONM/062/878396
[7]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[8]  
[Anonymous], 1983, B KOREAN MATH SOC
[9]  
[Anonymous], 2002, FUNCTIONAL EQUATIONS
[10]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64