Simple upper bounds for partition functions

被引:24
作者
Pribitkin, Wladimir de Azevedo [1 ]
机构
[1] CUNY Coll Staten Isl, Dept Math, Staten Isl, NY 10314 USA
关键词
Partitions; Dilogarithm; FUNCTION P(N);
D O I
10.1007/s11139-007-9022-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We tweak Siegel's method to produce a rather simple proof of a new upper bound on the number of partitions of an integer into an exact number of parts. Our approach, which exploits the delightful dilogarithm function, extends easily to numerous other counting functions.
引用
收藏
页码:113 / 119
页数:7
相关论文
共 14 条
[1]  
Andrews G.E., 1998, THEORY PARTITIONS
[2]  
[Anonymous], 1942, P INDIAN ACAD SCIENC
[3]  
[Anonymous], DUKE MATH J
[4]  
Apostol T, 1998, INTRO ANAL NUMBER TH
[5]  
Beukers F., 1993, Nieuw Arch. Wiskd., V11, P217
[6]  
KNOPP M, 1993, MODULAR FUNCTIONS AN
[7]  
NATHANSON MB, 2000, GRADUATE TEXTS MATH, V195
[8]  
PATTERSON S, 1995, CAMBRIDGE STUDIES AD, V14
[9]   Revisiting Rademacher's formula for the partition function p(n) [J].
Pribitkin, WD .
RAMANUJAN JOURNAL, 2000, 4 (04) :455-467
[10]   A convergent series for the partition function p(n) [J].
Rademacher, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1937, 23 :78-84