Ni-stabilizing additives for completion of Ni-rich layered cathode systems in lithium-ion batteries: An Ab initio study

被引:24
作者
Kim, Dong Young [1 ]
Park, Insun [1 ]
Shin, Yongwoo [2 ]
Seo, Dong-Hwa [2 ]
Kang, Yoon-Sok [1 ]
Doo, Seok-Gwang [1 ]
Koh, Meiten [1 ]
机构
[1] Samsung Elect, Samsung Adv Inst Technol, 130 Samsung Ro, Suwon 16678, Gyeonggi Do, South Korea
[2] Samsung Res Amer, Adv Mat Lab, 3 Van De Graaff Dr STE4, Burlington, MA 01803 USA
关键词
Lithium-ion battery; Electrolyte; Ni-stabilizing additive; Sulfones; Phosphates; Ab initio calculation; SOLID-ELECTROLYTE INTERPHASE; UNDERSTAND SURFACE-CHEMISTRY; HIGH-VOLTAGE; FLUOROETHYLENE CARBONATE; OXIDE CATHODE; TRIMETHYL PHOSPHITE; OXIDATION STABILITY; INTERFACE; FILM; MECHANISMS;
D O I
10.1016/j.jpowsour.2019.02.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose the development of Ni-stabilizing electrolyte additives to fundamentally prevent the degradation of Ni-rich layered cathode systems in lithium-ion batteries because unstable surface Ni and the dissolved Ni2+ are the major problems of those systems. The Ni2+-affinity is investigated as a key factor of the Ni-stabilizing additives. However, when providing a noble function to the electrolyte additive, the redox stability of the additives should be also understood. Thus, in addition to the intrinsic oxidation energy, the protonation and dehydrogenation energies of the additive molecules are calculated to determine the H-transfer-driven electrolyte oxidation. The Li+-complexation is considered to model the electrolyte reduction. We investigate the molecular-leveled computed factors of electrolyte materials using fully automated high-throughput ab initio calculations. Those computed factors for representative molecules based on CO3, SO4, SO3, SO2, PC3, PO3, and OPO3, which are of great interest as major parts of electrolyte materials, are discussed to guide the additive development. In particular, SO2 and OPO3 molecules, which can strongly stabilize Ni2+ in a structurally stable form, have great advantages as Ni-stabilizing electrolyte additives for completion of Ni-rich layered cathode systems.
引用
收藏
页码:74 / 83
页数:10
相关论文
共 91 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy [J].
Bak, Seong-Min ;
Hu, Enyuan ;
Zhou, Yongning ;
Yu, Xiqian ;
Senanayake, Sanjaya D. ;
Cho, Sung-Jin ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing ;
Nam, Kyung-Wan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) :22594-22601
[4]   Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance [J].
Bi, Yujing ;
Wang, Tao ;
Liu, Meng ;
Du, Rui ;
Yang, Wenchao ;
Liu, Zixuan ;
Peng, Zhe ;
Liu, Yang ;
Wang, Deyu ;
Sun, Xueliang .
RSC ADVANCES, 2016, 6 (23) :19233-19237
[5]   Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure Published as part of the Accounts of Chemical Research special issue "Energy Storage: Complexities Among Materials and Interfaces at Multiple Length Scales" [J].
Borodin, Oleg ;
Ren, Xiaoming ;
Vatamanu, Jenel ;
Cresce, Arthur von Wald ;
Knap, Jaroslaw ;
Xu, Kang .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (12) :2886-2894
[6]   Towards high throughput screening of electrochemical stability of battery electrolytes [J].
Borodin, Oleg ;
Olguin, Marco ;
Spear, Carrie E. ;
Leiter, Kenneth W. ;
Knap, Jaroslaw .
NANOTECHNOLOGY, 2015, 26 (35)
[7]   Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes [J].
Borodin, Oleg ;
Behl, Wishvender ;
Jow, T. Richard .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (17) :8661-8682
[8]   Quantum Chemistry and Molecular Dynamics Simulation Study of Dimethyl Carbonate: Ethylene Carbonate Electrolytes Doped with LiPF6 [J].
Borodin, Oleg ;
Smith, Grant D. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (06) :1763-1776
[9]  
Buchmann Isidor., 2001, BATTERIES PORTABLE W, V2
[10]   Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges [J].
Canepa, Pieremanuele ;
Gautam, Gopalakrishnan Sai ;
Hannah, Daniel C. ;
Malik, Rahul ;
Liu, Miao ;
Gallagher, Kevin G. ;
Persson, Kristin A. ;
Ceder, Gerbrand .
CHEMICAL REVIEWS, 2017, 117 (05) :4287-4341