Calculation of solid-liquid interfacial free energy: A classical nucleation theory based approach

被引:162
作者
Bai, XM [1 ]
Li, M [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
关键词
D O I
10.1063/1.2184315
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a simple approach to calculate the solid-liquid interfacial free energy. This new method is based on the classical nucleation theory. Using the molecular dynamics simulation, we employ spherical crystal nuclei embedded in the supercooled liquids to create an ideal model of a homogeneous nucleation. The interfacial free energy is extracted by fitting the relation between the critical nucleus size and the reciprocal of the critical undercooling temperature. The orientationally averaged interfacial free energy is found to be 0.302 +/- 0.002 (in standard LJ unit). The temperature dependence of the interfacial free energy is also obtained in this work. We find that the interfacial free energy increases slightly with increasing temperature. The positive temperature coefficient of the interfacial free energy is in qualitative agreement with Spaepen's analysis [Solid State Phys. 47, FS181 (1994)] and Turnbull's empirical estimation [J. Appl. Phys. 21, 1022 (1950)]. (c) 2006 American Institute of Physics.
引用
收藏
页数:12
相关论文
共 48 条
[1]   THERMODYNAMIC AND STRUCTURAL-PROPERTIES OF MODEL SYSTEMS AT SOLID-FLUID COEXISTENCE .2. MELTING AND SUBLIMATION OF THE LENNARD-JONES SYSTEM [J].
AGRAWAL, R ;
KOFKE, DA .
MOLECULAR PHYSICS, 1995, 85 (01) :43-59
[2]  
Allen M. P., 2017, Computer Simulation of Liquids, VSecond, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[3]  
[Anonymous], 1973, SOLID LIQUID INTERFA
[4]   Prediction of absolute crystal-nucleation rate in hard-sphere colloids [J].
Auer, S ;
Frenkel, D .
NATURE, 2001, 409 (6823) :1020-1023
[5]   Nature and extent of melting in superheated solids: Liquid-solid coexistence model [J].
Bai, XM ;
Li, M .
PHYSICAL REVIEW B, 2005, 72 (05)
[6]   Test of classical nucleation theory via molecular-dynamics simulation [J].
Bai, XM ;
Li, M .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (22)
[7]  
BAI XM, UNPUB
[8]  
BAKER JA, 1967, J CHEM PHYS, V47, P4714
[9]   Solidification microstructures: Recent developments, future directions [J].
Boettinger, WJ ;
Coriell, SR ;
Greer, AL ;
Karma, A ;
Kurz, W ;
Rappaz, M ;
Trivedi, R .
ACTA MATERIALIA, 2000, 48 (01) :43-70
[10]   MOLECULAR-DYNAMICS INVESTIGATION OF THE CRYSTAL FLUID INTERFACE .6. EXCESS SURFACE FREE-ENERGIES OF CRYSTAL LIQUID-SYSTEMS [J].
BROUGHTON, JQ ;
GILMER, GH .
JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (10) :5759-5768