Premartensite to martensite transition and its implications for the origin of modulation in Ni2MnGa ferromagnetic shape-memory alloy

被引:54
作者
Singh, Sanjay [1 ]
Bednarcik, J. [2 ]
Barman, S. R. [3 ]
Felser, C. [1 ]
Pandey, Dhananjai [4 ]
机构
[1] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
[2] Deutsch Elektronen Synchrotron DESY, Photon Sci, FS PE, D-22607 Hamburg, Germany
[3] UGC DAE Consortium Sci Res, Indore 452001, Madhya Pradesh, India
[4] Banaras Hindu Univ, Sch Mat Sci & Technol, Indian Inst Technol, Varanasi 221005, Uttar Pradesh, India
关键词
FIELD-INDUCED STRAIN; CRYSTAL-STRUCTURE; ADAPTIVE MARTENSITE; PHASES; TRANSFORMATION;
D O I
10.1103/PhysRevB.92.054112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present results of a temperature-dependent high-resolution synchrotron x-ray powder diffraction study of sequence of phase transitions in Ni2MnGa. Our results show that the incommensurate martensite phase results from the incommensurate premartensite phase and not from the austenite phase assumed in the adaptive phase model. The premartensite phase transforms to the martensite phase through a first order phase transition with coexistence of the two phases in a broad temperature interval (similar to 40 K), discontinuous change in the unit cell volume as also in the modulation wave vector across the transition temperature, and considerable thermal hysteresis in the characteristic transition temperatures. The temperature variation of the modulation wave vector q shows smooth analytic behavior with no evidence for any devilish plateau corresponding to an intermediate or ground state commensurate lock-in phase. The existence of the incommensurate 7M-like modulated structure down to 5 K suggests that the incommensurate 7M-like modulation is the ground state of Ni2MnGa and not the Bain distorted tetragonal L1(0) phase or any other lock-in phase with a commensurate modulation. These findings can be explained within the framework of the soft phonon model.
引用
收藏
页数:8
相关论文
共 44 条
[2]   Variation of magnetoresistance in Ni2+xMn1-xGa with composition [J].
Banik, S. ;
Singh, Sanjay ;
Rawat, R. ;
Mukhopadhyay, P. K. ;
Ahuja, B. L. ;
Awasthi, A. M. ;
Barman, S. R. ;
Sampathkumaran, E. V. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (10)
[3]   Local magnetism and structural properties of Heusler Ni2MnGa alloys [J].
Belesi, M. ;
Giebeler, L. ;
Blum, C. G. F. ;
Roessler, U. K. ;
Buechner, B. ;
Wurmehl, S. .
PHYSICAL REVIEW B, 2015, 91 (13)
[4]   Large negative magnetoresistance in a ferromagnetic shape memory alloy:: Ni2+xMn1-xGa -: art. no. 202508 [J].
Biswas, C ;
Rawat, R ;
Barman, SR .
APPLIED PHYSICS LETTERS, 2005, 86 (20) :1-3
[5]   The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa [J].
Brown, PJ ;
Crangle, J ;
Kanomata, T ;
Matsmuoto, M ;
Neumann, KU ;
Ouladdiaf, B ;
Ziebeck, KRA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (43) :10159-10171
[6]   First-principles study of lattice instabilities in ferromagnetic Ni2MnGa -: art. no. 134104 [J].
Bungaro, C ;
Rabe, KM ;
Corso, AD .
PHYSICAL REVIEW B, 2003, 68 (13)
[7]   Review of state of art of smart structures and integrated systems [J].
Chopra, I .
AIAA JOURNAL, 2002, 40 (11) :2145-2187
[8]   Coexistence of charge-density wave and ferromagnetism in Ni2MnGa [J].
D'Souza, S. W. ;
Rai, Abhishek ;
Nayak, J. ;
Maniraj, M. ;
Dhaka, R. S. ;
Barman, S. R. ;
Schlagel, D. L. ;
Lograsso, T. A. ;
Chakrabarti, Aparna .
PHYSICAL REVIEW B, 2012, 85 (08)
[9]  
D'Souza SW, 2011, MATER SCI FORUM, V684, P215, DOI 10.4028/www.scientific.net/MSF.684.215
[10]  
De Wolff P. M., 1977, SYMMETRY OPERATION 1, VA33, P493