Numerical study of the regularizing effect of the 3D weakly transverse BBM equations for long times

被引:0
作者
Mammeri, Y. [1 ]
机构
[1] Univ Picardie Jules Verne, CNRS UMR 7352, Lab Amienois Math Fondamentale & Appl, F-80039 Amiens, France
关键词
3D-KP equations; BBM equation; Spectral method; Predictor-corrector scheme; Dispersion; Solitonic behavior; Transverse instability; SOLITARY-WAVE SOLUTIONS; KADOMTSEV-PETVIASHVILI EQUATION; NONLINEAR INSTABILITY; KP; STABILITY; EXISTENCE;
D O I
10.1016/j.amc.2012.10.112
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
From a spectral method combined with a predictor-corrector scheme, we numerically study the behavior in time of solutions of the three-dimensional generalized Kadomtsev-Petviashvili equations regularized using the BBM trick. The solution no longer blows up and the solitonic behavior is observed. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:5162 / 5173
页数:12
相关论文
共 31 条
[1]   On the transverse instability of solitary waves in the Kadomtsev-Petviashvili equation [J].
Alexander, JC ;
Pego, RL ;
Sachs, RL .
PHYSICS LETTERS A, 1997, 226 (3-4) :187-192
[3]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[4]  
Béthuel F, 2008, CONTEMP MATH, V473, P55
[5]   The cauchy problem and stability of solitary-wave solutions for RLW-KP-type equations [J].
Bona, JL ;
Liu, Y ;
Tom, MM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 185 (02) :437-482
[6]   Solitary waves of generalized Kadomtsev-Petviashvili equations [J].
deBouard, A ;
Saut, JC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :211-236
[7]   Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves [J].
DeBouard, A ;
Saut, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (05) :1064-1085
[8]   The decomposition method for solving (2+1)-dimensional Boussinesq equation and (3+I)-dimensional KP equation [J].
El-Sayed, SM ;
Kaya, D .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 157 (02) :523-534
[9]  
Falkovitch G., 1985, SOV PHYS JETP, V62, P146
[10]   Numerical Study of Solutions of the 3D Generalized Kadomtsev-Petviashvili Equations for Long Times [J].
Hamidouche, E. ;
Mammeri, Y. ;
Mefire, S. M. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 6 (05) :1022-1062