Thermal Insulation and Flame Retardancy of the Hydroxyapatite Nanorods/Sodium Alginate Composite Aerogel with a Double-Crosslinked Structure

被引:50
|
作者
Zhu, Jundong [1 ,2 ]
Li, Xue [1 ]
Li, Dongxiao [3 ]
Jiang, Chongwen [3 ]
机构
[1] Hunan Univ Technol & Business, Sch Resources & Environm, Changsha 410205, Hunan, Peoples R China
[2] Hunan Univ Technol & Business, Inst Carbon Neutral, Changsha 410205, Hunan, Peoples R China
[3] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
关键词
hydroxyapatite nanorods; sodium alginate; composite aerogel; crosslinking; thermal insulation; flame retardant; OIL/WATER SEPARATION; MECHANICAL PROPERTY; FACILE FABRICATION; OIL ABSORPTION; EFFICIENT; FOAMS; ULTRALIGHT; CONSTRUCTION; LIGHTWEIGHT; CELLULOSE;
D O I
10.1021/acsami.2c12254
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
As advanced thermal management materials, aerogels have great research value in the fields of engineering insulation, pipeline transportation, and packaging insulation. The composite interaction of the two-phase interface and the construction of a porous structure have an important impact on the thermal properties. Herein, a novel HANRs/SAB composite aerogel was prepared using sodium alginate (SA) with hydroxyapatite nanorods (HANRs), combined with boric acid cross linking and freeze drying. In the prepared sample, the calcium ions in HANRs and SA formed the first layer of binding force and the chemical crosslinking of sodium alginate with boric acid formed the second layer of strong binding force, which effectively supported the skeleton of the aerogel and enhanced the overall mechanical properties. The modulus and maximum compressive strength of the obtained HANRs/SAB aerogel were 2.39 and 0.75 MPa, respectively, while the bulk density was 0.038-0.068 g center dot cm-3. Based on the prominent physical structure, the as-prepared HANRs/ SAB aerogel exhibited good thermal insulation (similar to 35.15 mW center dot m-1 center dot K-1) and outstanding flame retardant performance. Flameretardant boric acid and high-thermal stability HANRs could effectively prevent heat transfer and organic combustion, thus resulting in an extremely low smoke gas release (11.3 m2 m-2). Therefore, the low-cost biopolymer composite aerogel based on a crosslinking strategy has broad application prospects in the field of thermal insulation and flame retardancy.
引用
收藏
页码:45822 / 45831
页数:10
相关论文
共 50 条
  • [41] Flame retardant cellulose/polyvinyl alcohol/sodium alginate composite aerogels crosslinked by metal ions for flame resistance materials
    Zhang, Chenrui
    Hu, Yingao
    Shao, Jingjing
    Pan, Hui
    CELLULOSE, 2023, 30 (11) : 7079 - 7093
  • [42] Mechanical and thermal insulation properties of isocyanate crosslinked resorcinol formaldehyde aerogel: Effect of isocyanate structure
    Aghabararpour, Mohammad
    Mohsenpour, Mahsa
    Motahari, Siamak
    Ghahreman, Ahmad
    JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (46)
  • [43] Multifunctional Carbon Fiber Reinforced C/SiOC Aerogel Composites for Efficient Electromagnetic Wave Absorption, Thermal Insulation, and Flame Retardancy
    Yang, Dongdong
    Dong, Shun
    Cui, Tangyin
    Xin, Jianqiang
    Xu, Xiaojing
    Chen, Jingmao
    Xie, Yongshuai
    Chen, Guiqing
    Hong, Changqing
    Zhang, Xinghong
    SMALL, 2024, 20 (23)
  • [44] Magnesium hydroxide coated hollow glass microspheres/chitosan composite aerogels with excellent thermal insulation and flame retardancy
    Zhu, Zhaoqi
    Niu, Ye
    Wang, Shuo
    Su, Min
    Long, Yong
    Sun, Hanxue
    Liang, Weidong
    Li, An
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 612 : 35 - 42
  • [45] Double cross-linked biomass aerogels with enhanced mechanical strength and flame retardancy for construction thermal insulation
    Gong, Ling
    An, Xinyu
    Ma, Chang
    Wang, Rui
    Zhou, Xing
    Liu, Chang
    Li, Ning
    Liu, Zhiming
    Li, Xu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 281
  • [46] A novel phosphorus-modified silica aerogel for simultaneously improvement of flame retardancy, mechanical and thermal insulation properties in rigid polyurethane foam
    Cao, Jiatao
    Tao, Jie
    Yang, Meini
    Liu, Changjiang
    Yan, Chengshu
    Zhao, Yun
    Yu, Chuanbai
    Zhao, Hai-Bo
    Rao, Wenhui
    CHEMICAL ENGINEERING JOURNAL, 2024, 485
  • [47] A novel phosphorus-modified silica aerogel for simultaneously improvement of flame retardancy, mechanical and thermal insulation properties in rigid polyurethane foam
    Cao, Jiatao
    Tao, Jie
    Yang, Meini
    Liu, Changjiang
    Yan, Chengshu
    Zhao, Yun
    Yu, Chuanbai
    Zhao, Hai-Bo
    Rao, Wenhui
    Chemical Engineering Journal, 2024, 485
  • [48] A biocompatible double-crosslinked gelatin/ sodium alginate/dopamine/quaterniazed chitosan hydrogel for wound dressings based on 3D bioprinting technology
    Lu, Yueqi
    Xu, Jie
    Su, Ya
    Fang, Huan
    Liu, Jiaqi
    Lv, Siyao
    Cheng, Yuen Yee
    Nie, Yi
    Li, Wenfang
    Pan, Bo
    Song, Kedong
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (02) : 438 - 452
  • [49] Sodium alginate oxide assembly layered double hydroxide and its structure-activity relationship to anti-fogging properties and flame retardancy of leather
    Lyu, Bin
    Luo, Kang
    Wang, Yuefeng
    Gao, Dangge
    Ma, Jianzhong
    APPLIED CLAY SCIENCE, 2020, 190
  • [50] Influence of ammonium polyphosphate microencapsulation on flame retardancy, thermal degradation and crystal structure of polypropylene composite
    Wu, Kun
    Zhang, Yankui
    Hu, Wenguang
    Lian, Jintian
    Hu, Yuan
    COMPOSITES SCIENCE AND TECHNOLOGY, 2013, 81 : 17 - 23