Concerning the Strauss conjecture and almost global existence for nonlinear Dirichlet-wave equations in 4-dimensions

被引:37
作者
Du, Yi [2 ]
Metcalfe, Jason [3 ]
Sogge, Christopher D. [1 ]
Zhou, Yi [2 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Univ N Carolina, Dept Math, Chapel Hill, NC USA
关键词
lifespan; nonlinear wave equations;
D O I
10.1080/03605300802239803
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the obstacle version of the Strauss conjecture holds when the spatial dimension is equal to 4. We also show that an almost global existence theorem of Hormander for (4 + 1)-dimensional Minkowski space holds in the obstacle setting. We use weighed space-time variants of the energy inequality and a variant of the classical Hardy inequality.
引用
收藏
页码:1487 / 1506
页数:20
相关论文
共 24 条
[1]   Remarks on energy inequalities for wave and Maxwell equations on a curved background [J].
Alinhac, S .
MATHEMATISCHE ANNALEN, 2004, 329 (04) :707-722
[2]   Global Strichartz estimates for nontrapping geometries: About an article by H. Smith and C. Sogge [J].
Burq, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (9-10) :1675-1683
[3]   The lifespan for nonlinear wave equation outside of star-shaped obstacle in three space dimensions [J].
Du, Yi ;
Zhou, Yi .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (08) :1455-1486
[4]   Weighted Strichartz estimates and global existence for semilinear wave equations [J].
Georgiev, V ;
Lindblad, H ;
Sogge, CD .
AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (06) :1291-1319
[5]  
HORMANDER L, 1991, IMA V MATH, V30, P51
[7]   Almost global existence for quasilinear wave equations in three space dimensions [J].
Keel, M ;
Smith, HF ;
Sogge, CD .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (01) :109-153
[8]   Almost global existence for some semilinear wave equations [J].
Keel, M ;
Smith, HF ;
Sogge, CD .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1) :265-279
[9]   Global existence for a quasilinear wave equation outside of star-shaped domains [J].
Keel, M ;
Smith, HF ;
Sogge, CD .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 189 (01) :155-226
[10]   ON THE ZAKHAROV AND ZAKHAROV-SCHULMAN SYSTEMS [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 127 (01) :204-234