From the quantum Moore's law toward silicon based universal quantum computing

被引:0
作者
Prati, Enrico [1 ]
Rotta, Davide [2 ,3 ]
Sebastiano, Fabio [4 ]
Charbon, Edoardo [4 ]
机构
[1] CNR, Ist Foton & Nanotecnol, Milan, Italy
[2] Scuola Super St Anna InPhoTEC, I-56124 Pisa, Italy
[3] CNIT, I-56124 Pisa, Italy
[4] Delft Univ Technol, Fac Elect Engn, Delft, Netherlands
来源
2017 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC) | 2017年
关键词
quantum computing; surface codes; qubits; quantum error-correction; Moore's Law; CMOS; INFORMATION; DENSITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Forthcoming CMOS technology nodes are in principle sufficient for achieving both the quantum information density and the speed that are critical for error-free logical qubits. Using data from the roadmap for semiconductor devices from ITRS and IEDM, we applied the standard CMOS design rules to a universal set of quantum logic gates to control silicon qubits. We consequently obtain a scaling law for quantum information density for Steane code, concatenated codes, and surface code, which represent the quantum information equivalent of Moore's law in terms of density scaling per node. By imposing the constraints due to both quantum error correction and the intrinsic operation speed limitation of a physical silicon qubit, we determine that technology nodes below 14 nm can in principle support error-free logical qubits manipulated at GHz frequency. We review the current state-of-the-art of silicon technology to assess the performance of different silicon qubit architectures based on CMOS single donors and double quantum dot devices. Our analysis demonstrates that silicon technology is compatible with the scalability requirements imposed by quantum error correction architectures for universal quantum computing. Such considerations provide a benchmark for the development of a silicon-based quantum computer and a general guideline for other quantum technology platforms.
引用
收藏
页码:208 / 211
页数:4
相关论文
共 18 条
[1]  
[Anonymous], 2013, EX SUMM
[2]   Universal set of quantum gates for double-dot exchange-only spin qubits with intradot coupling [J].
De Michielis, M. ;
Ferraro, E. ;
Fanciulli, M. ;
Prati, E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (06)
[3]   Coherent tunneling by adiabatic passage of an exchange-only spin qubit in a double quantum dot chain [J].
Ferraro, E. ;
De Michielis, M. ;
Fanciulli, M. ;
Prati, E. .
PHYSICAL REVIEW B, 2015, 91 (07)
[4]   Effective Hamiltonian for two interacting double-dot exchange-only qubits and their controlled-NOT operations [J].
Ferraro, E. ;
De Michielis, M. ;
Fanciulli, M. ;
Prati, E. .
QUANTUM INFORMATION PROCESSING, 2015, 14 (01) :47-65
[5]   Effective Hamiltonian for the hybrid double quantum dot qubit [J].
Ferraro, E. ;
De Michielis, M. ;
Mazzeo, G. ;
Fanciulli, M. ;
Prati, E. .
QUANTUM INFORMATION PROCESSING, 2014, 13 (05) :1155-1173
[6]   Cryogenic instrumentation for fast current measurement in a silicon single electron transistor [J].
Ferrus, T. ;
Hasko, D. G. ;
Morrissey, Q. R. ;
Burge, S. R. ;
Freeman, E. J. ;
French, M. J. ;
Lam, A. ;
Creswell, L. ;
Collier, R. J. ;
Williams, D. A. ;
Briggs, G. A. D. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (03)
[7]   A reconfigurable cryogenic platform for the classical control of quantum processors [J].
Homulle, Harald ;
Visser, Stefan ;
Patra, Bishnu ;
Ferrari, Giorgio ;
Prati, Enrico ;
Sebastiano, Fabio ;
Charbon, Edoardo .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (04)
[8]   Intrinsic top-down unmanufacturability [J].
Kelly, M. J. .
NANOTECHNOLOGY, 2011, 22 (24)
[9]   A CMOS silicon spin qubit [J].
Maurand, R. ;
Jehl, X. ;
Kotekar-Patil, D. ;
Corna, A. ;
Bohuslavskyi, H. ;
Lavieville, R. ;
Hutin, L. ;
Barraud, S. ;
Vinet, M. ;
Sanquer, M. ;
De Franceschi, S. .
NATURE COMMUNICATIONS, 2016, 7
[10]  
Moore G. E., 1965, PROC IEEE, V38