Nonadiabatic ab initio molecular dynamics using linear-response time-dependent density functional theory

被引:10
|
作者
Curchod, Basile F. E. [1 ]
Penfold, Thomas J. [1 ,2 ,3 ]
Rothlisberger, Ursula [1 ]
Tavernelli, Ivano [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Computat Chem & Biochem, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Lab Spect Ultrarapide, CH-1015 Lausanne, Switzerland
[3] Paul Scherrer Inst, SwissFEL, CH-5232 Villigen, Switzerland
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2013年 / 11卷 / 09期
关键词
nonadiabatic dynamics; time-dependent density functional theory; excited state; ab initio molecular dynamics; LOCAL-CONTROL THEORY; ELECTRONIC-TRANSITIONS; QUANTUM TRAJECTORIES; REPRESENTATION;
D O I
10.2478/s11534-013-0321-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review our recent work on ab initio nonadiabatic molecular dynamics, based on linear-response timedependent density functional theory for the calculation of the nuclear forces, potential energy surfaces, and nonadiabatic couplings. Furthermore, we describe how nuclear quantum dynamics beyond the Born-Oppenheimer approximation can be performed using quantum trajectories. Finally, the coupling and control of an external electromagnetic field with mixed quantum/classical trajectory surface hopping is discussed.
引用
收藏
页码:1059 / 1065
页数:7
相关论文
共 50 条
  • [1] Local Control Theory using Trajectory Surface Hopping and Linear-Response Time-Dependent Density Functional Theory
    Curchod, Basile F. E.
    Penfold, Thomas J.
    Rothlisberger, Ursula
    Tavernelli, Ivano
    CHIMIA, 2013, 67 (04) : 218 - 221
  • [2] Nonadiabatic dynamics with spin-flip vs linear-response time-dependent density functional theory: A case study for the protonated Schiff base C5H6NH2+
    Zhang, Xing
    Herbert, John M.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (12)
  • [3] Analysis and visualization of energy densities. II. Insights from linear-response time-dependent density functional theory calculations
    Pei, Zheng
    Yang, Junjie
    Deng, Jingheng
    Mao, Yuezhi
    Wu, Qin
    Yang, Zhibo
    Wang, Bin
    Aikens, Christine M.
    Liang, Wanzhen
    Shao, Yihan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (46) : 26852 - 26864
  • [4] Incorporating spin-orbit effects into surface hopping dynamics using the diagonal representation: a linear-response time-dependent density functional theory implementation with applications to 2-thiouracil
    Duan, Jun-Xin
    Zhou, Yun
    Xie, Zhi-Zhong
    Sun, Tao-Lei
    Cao, Jun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (22) : 15445 - 15454
  • [5] Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory
    Vecharynski, Eugene
    Brabec, Jiri
    Shao, Meiyue
    Govind, Niranjan
    Yang, Chao
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 221 : 42 - 52
  • [6] Density functional theory for efficient ab initio molecular dynamics simulations in solution
    Fattebert, JL
    Gygi, F
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2002, 23 (06) : 662 - 666
  • [7] Laser-Driven Molecular Dissociation: Time-Dependent Density Functional Theory and Molecular Dynamics Simulations
    Taguchi, Keita
    Haruyama, Jun
    Watanabe, Kazuyuki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2009, 78 (09)
  • [8] Molecular excitation energies from time-dependent density functional theory
    Grabo, T
    Petersilka, M
    Gross, EKU
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2000, 501 : 353 - 367
  • [9] State-Specific (Linear-Response)-Polarizable Continuum Models/Time-Dependent Density Functional Theory Study on the Absorption and Emission Spectra of an Organic Fluorescent Emitter
    Liu Xiao-Jun
    Lin Tao
    Cai Xin-Chen
    Gao Shao-Wei
    Yang Lei
    Ma Rui
    Zhang Jin-Yue
    ACTA PHYSICO-CHIMICA SINICA, 2012, 28 (06) : 1329 - 1336
  • [10] Hybrid MPI and OpenMP parallel implementation of large-scale linear-response time-dependent density functional theory with plane-wave basis set
    Wan, Lingyun
    Liu, Xiaofeng
    Liu, Jie
    Qin, Xinming
    Hu, Wei
    Yang, Jinlong
    ELECTRONIC STRUCTURE, 2021, 3 (02):