Stability of peakons for an integrable shallow water equation

被引:19
作者
Hakkaev, Sevdzhan [1 ]
机构
[1] Univ Shumen, Fac Math & Informat, Shumen 9712, Bulgaria
关键词
integrable equation; blow-up; solitary waves;
D O I
10.1016/j.physleta.2006.01.033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter an integrable shallow water equation derived by Dullin, Gottwald and Holm is investigated. Analogous to the Camassa-Holm equation, this equation possesses the blow-up phenomenon. The orbital stability of the peaked solitary waves is also proved. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 144
页数:8
相关论文
共 17 条
[1]   Acoustic scattering and the extended Korteweg-de Vries hierarchy [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
ADVANCES IN MATHEMATICS, 1998, 140 (02) :190-206
[2]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[3]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[4]  
Camassa R., 1991, ADV APPL MECH, V31, P1
[5]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[6]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[7]   Stability of the Camassa-Holm solitons [J].
Constantin, A ;
Strauss, WA .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (04) :415-422
[8]   On the scattering problem for the Camassa-Holm equation [J].
Constantin, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2008) :953-970
[9]   Existence of permanent and breaking waves for a shallow water equation: A geometric approach [J].
Constantin, A .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (02) :321-+
[10]  
Constantin A., 1998, ANN SC NORM SUPER PI, V26, P303