L10 FePtX-Y media for heat-assisted magnetic recording

被引:190
作者
Weller, Dieter [1 ]
Mosendz, Oleksandr [1 ]
Parker, Gregory [1 ]
Pisana, Simone [1 ]
Santos, Tiffany S. [1 ]
机构
[1] HGST, San Jose, CA 95135 USA
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2013年 / 210卷 / 07期
关键词
grain size; granular alloys; heat assisted magnetic recording; L1(0) FePt; texture; DISORDER-ORDER TRANSFORMATION; EXCHANGE SPRING MEDIA; GRANULAR THIN-FILMS; SM-CO FILMS; EPITAXIAL-GROWTH; GRAIN-SIZE; GLASS SUBSTRATE; HIGH COERCIVITY; AG; MICROSTRUCTURE;
D O I
10.1002/pssa.201329106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Highly chemically ordered L1(0) FePtX-Y nano-granular films with high perpendicular magnetic anisotropy are key media approaches for future heat-assisted magnetic recording (HAMR). They are sputtered at elevated temperature on glass disks coated with adhesion, heat sink, and texturing layers. Adding X=Ag reduces the required deposition temperature and X=Cu lowers the Curie temperature. Current seed layers are NiTa for adhesion and heat sink and well-oriented MgO (002) layers for highly textured FePtX(002) grains surrounded by Y=carbon and/or other segregants. Magnetic anisotropies larger than 4.5x10(7)ergcm(-3) and coercivities beyond 5Tesla have been achieved. The combination of thermal conductivity and Curie temperature determines the required laser power during recording. Key goals are to optimize media, heads, head-disk-spacing, and read-back channels to extend the areal density to 1.5-5Tbin(-2). [GRAPHICS] Head and media in heat-assisted magnetic recording(1). LD, laser diode; TFC, thermal fluctuation control; NFT, near field transducer. (1)Lidu Huang et al., HAMR Thermal Modeling Including Media Hot Spot, APMRC 2012. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1245 / 1260
页数:16
相关论文
共 149 条
[1]   Bit Patterned Media at 1 Tdot/in2 and Beyond [J].
Albrecht, Thomas R. ;
Bedau, Daniel ;
Dobisz, Elizabeth ;
Gao, He ;
Grobis, Michael ;
Hellwig, Olav ;
Kercher, Dan ;
Lille, Jeffrey ;
Marinero, Ernesto ;
Patel, Kanaiyalal ;
Ruiz, Ricardo ;
Schabes, Manfred E. ;
Wan, Lei ;
Weller, Dieter ;
Wu, Tsai-Wei .
IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (02) :773-778
[2]   Hard/graded exchange spring composite media based on FePt [J].
Alexandrakis, V. ;
Speliotis, Th ;
Manios, E. ;
Niarchos, D. ;
Fidler, J. ;
Lee, Jehyun ;
Varvaro, G. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
[3]  
[Anonymous], 2012, TDK CLAIMS HDD AREAL
[4]   Nano-composite FePt-Al2O3 films for high-density magnetic recording [J].
Bai, J ;
Yang, Z ;
Wei, F ;
Matsumoto, M ;
Morisako, A .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 257 (01) :132-137
[5]   Time-temperature-transformation diagrams for the A1 to L10 phase transformation in FePt and FeCuPt thin films [J].
Berry, D. C. ;
Barmak, K. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (01)
[6]  
Bertram H. N., 1994, THEORY MAGNETIC RECO
[7]   Influence of annealing time on structural and magnetic properties of rapid thermally annealed FePt films [J].
Brombacher, C. ;
Schubert, C. ;
Neupert, K. ;
Kehr, M. ;
Donges, J. ;
Albrecht, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (35)
[8]   Temperature dependence of the magnetic properties of L10-FePt nanostructures and films [J].
Bublat, T. ;
Goll, D. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (11)
[9]   Low-temperature deposition of L10 FePt films for ultra-high density magnetic recording [J].
Chen, J. S. ;
Lim, B. C. ;
Ding, Y. F. ;
Chow, G. M. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 303 (02) :309-317
[10]  
Chen J.S., 2009, J APPL PHYS, V105, p07B702