Analogues of Ramanujan's partition identities

被引:46
|
作者
Xia, Ernest X. W. [1 ]
Yao, Olivia X. M. [1 ]
机构
[1] Jiangsu Univ, Fac Sci, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Theta functions; Partitions; Partition congruences; 2-Dissections; GOLLNITZ-GORDON FUNCTIONS; MODULAR RELATIONS; BEAUTIFUL IDENTITY; EQUATIONS; PROOFS;
D O I
10.1007/s11139-012-9439-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ramanujan discovered that Sigma(infinity)(n=0) p(5n + 4)q(n) = 5 Pi(infinity)(j=1) (1 - q(5j))(5)/(1 - q(j))(6), where p( n) is the number of partitions of n. Recently, H.-C. Chan and S. Cooper, and H. H. Chan and P. C. Toh established several analogues of Ramanujan's partition identities by employing the theory of modular functions. Very recently, N. D. Baruah and K. K. Ojah studied the partition function p[c(l)d(m)](n) which is defined by Sigma(infinity)(n=0) p([cldm])(n)q(n) = 1/Pi(infinity)(j=1) (1 - q(cj))(l)(1 - q(dj))m They discovered some analogues of Ramanujan's partition identities and deduced several interesting partition congruences. In this paper, we provide a uniform method to prove some of their results by utilizing an addition formula. In the process, we also establish some new analogues of Ramanujan's partition identities and congruences for p([cldm])(n).
引用
收藏
页码:373 / 396
页数:24
相关论文
共 50 条
  • [21] Some modular equations analogous to Ramanujan's identities
    Srivastava, H. M.
    Kumar, B. R. Srivatsa
    Narendra, R.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)
  • [22] Some identities related to Ramanujan's tau function
    Robbins, N
    ARS COMBINATORIA, 2001, 60 : 219 - 224
  • [23] Modular identities for some special cases of Ramanujan's general continued fraction
    Bhat, Shruthi C.
    Srivastava, H. M.
    Kumar, B. R. Srivatsa
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2025, 119 (02)
  • [24] New proofs of Ramanujan’s identities on false theta functions
    Liuquan Wang
    The Ramanujan Journal, 2019, 50 : 423 - 431
  • [25] New proofs of Ramanujan's identities on false theta functions
    Wang, Liuquan
    RAMANUJAN JOURNAL, 2019, 50 (02) : 423 - 431
  • [26] Some identities on Beck's partition statistics
    Chen, Yongqiang
    Jin, Jing
    Yao, Olivia X. M.
    RAMANUJAN JOURNAL, 2024, 63 (03) : 699 - 713
  • [27] Some identities on Beck’s partition statistics
    Yongqiang Chen
    Jing Jin
    Olivia X. M. Yao
    The Ramanujan Journal, 2024, 63 : 699 - 713
  • [28] Ramanujan's congruences for the partition function modulo 5, 7, and 11
    Berndt, Bruce C.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (03) : 349 - 354
  • [29] A proof of Bressoud's conjecture related to the Rogers-Ramanujan identities
    Fu, Shishuo
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (08) : 2141 - 2148
  • [30] Arithmetic properties of Ramanujan's general partition function for modulo 11
    Kumar, Belakavadi R. Srivatsa
    Narendra, Ramakrishna
    Rajanna, Karpenahalli R.
    KUWAIT JOURNAL OF SCIENCE, 2021, 48 (01) : 10 - 13