Simultaneous stabilization of a segment of systems by a parameterized compensator

被引:0
作者
Meddeb, Houda [1 ]
Fonte, Christophe [1 ]
Zasadzinski, Michel [1 ]
机构
[1] Univ Lorraine, CRAN, UMR 7039, F-54400 Cosnes Et Romain, France
来源
2013 21ST MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED) | 2013年
关键词
Simultaneous stabilization; segment of systems; bilinear matrix inequality (BMI); PLANTS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a particular parametrization of controllers is used to study the simultaneous stabilization of a segment of systems. A necessary and sufficient condition for simultaneously stabilizing this segment is produced. The given condition is converted into an optimization problem with one bilinear matrix inequality (BMI) constraint. Finally, an algorithm for computation of stabilizing controllers is proposed with an illustrative example.
引用
收藏
页码:1076 / 1081
页数:6
相关论文
共 11 条
[1]  
Blondel Vincent., 1994, LECT NOTES CONTROL I, V191
[2]   ROUTH-HURWITZ-FUJIWARA AND SCHUR-COHN-FUJIWARA THEOREMS FOR ROOT-SEPARATION PROBLEM [J].
DATTA, BN .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1978, 22 (DEC) :235-246
[3]   On the simultaneous stabilization of three or more plants [J].
Fonte, C ;
Zasadzinski, M ;
Bernier-Kazantsev, C ;
Darouach, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (07) :1101-1107
[4]  
Fonte C., 2008, P IEEE AM CONTR C SE
[5]   Wronskian-based tests for stability of polynomial combinations [J].
Fonte, Christophe ;
Delattre, Cedric .
SYSTEMS & CONTROL LETTERS, 2011, 60 (08) :590-595
[6]   Rank-one LMI approach to simultaneous stabilization of linear systems [J].
Henrion, D ;
Tarbouriech, S ;
Sebek, M .
SYSTEMS & CONTROL LETTERS, 1999, 38 (02) :79-89
[7]  
Henrion D., 1998, P AM CONTR C PHIL
[8]   Condition and algorithm for simultaneous stabilization of linear plants [J].
Jia, YM ;
Ackermann, H .
AUTOMATICA, 2001, 37 (09) :1425-1434
[9]  
Lancaster P., 1985, THEORY MATRICES, V2nd
[10]  
Meddeb H., 2013, JOURNEES DOCTORALES