The extinction and persistence of the stochastic SIS epidemic model with vaccination

被引:152
作者
Zhao, Yanan [1 ,2 ]
Jiang, Daqing [1 ]
O'Regan, Donal [3 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Changchun Univ, Sch Sci, Changchun 130022, Jilin, Peoples R China
[3] Natl Univ Ireland, Dept Math, Galway, Ireland
关键词
Stochastic SIS epidemic model; Vaccination; Threshold; Extinction; Persistence; HIV VACCINATION; STABILITY;
D O I
10.1016/j.physa.2013.06.009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we discuss the dynamics of a stochastic SIS epidemic model with vaccination. When the noise is large, the infective decays exponentially to zero regardless of the magnitude of R-0. When the noise is small, sufficient conditions for extinction exponentially and persistence in the mean are established. The results are illustrated by computer simulations. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:4916 / 4927
页数:12
相关论文
共 24 条
[1]   Stability of epidemic model with time delays influenced by stochastic perturbations [J].
Beretta, E ;
Kolmanovskii, V ;
Shaikhet, L .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 45 (3-4) :269-277
[2]   On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment [J].
Carletti, M .
MATHEMATICAL BIOSCIENCES, 2002, 175 (02) :117-131
[3]   Mean-square stability of a stochastic model for bacteriophage infection with time delays [J].
Carletti, M-Argherita .
MATHEMATICAL BIOSCIENCES, 2007, 210 (02) :395-414
[4]   A stochastic model of AIDS and condom use [J].
Dalal, Nirav ;
Greenhalgh, David ;
Mao, Xuerong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :36-53
[5]   A STOCHASTIC DIFFERENTIAL EQUATION SIS EPIDEMIC MODEL [J].
Gray, A. ;
Greenhalgh, D. ;
Hu, L. ;
Mao, X. ;
Pan, J. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (03) :876-902
[6]   Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity [J].
Greenhalgh, D .
MATHEMATICAL AND COMPUTER MODELLING, 1997, 25 (02) :85-107
[7]   MODELING EPIDEMICS WITH VARIABLE CONTACT RATES [J].
GREENHALGH, D ;
DAS, R .
THEORETICAL POPULATION BIOLOGY, 1995, 47 (02) :129-179
[8]  
GREENHALGH D, 1992, IMA J MATH APPL MED, V9, P67
[9]   ESTIMATION OF VACCINE EFFICACY IN OUTBREAKS OF ACUTE INFECTIOUS-DISEASES [J].
HABER, M ;
LONGINI, IM ;
HALLORAN, ME .
STATISTICS IN MEDICINE, 1991, 10 (10) :1573-1584
[10]   MEASURES OF THE EFFECTS OF VACCINATION IN A RANDOMLY MIXING POPULATION [J].
HABER, M ;
LONGINI, IM ;
HALLORAN, ME .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 1991, 20 (01) :300-310