Hierarchical User Clustering for mmWave-NOMA Systems

被引:3
作者
Marasinghe, Dileepa [1 ]
Jayaweera, Nalin [1 ]
Rajatheva, Nandana [1 ]
Latva-aho, Matti [1 ]
机构
[1] Univ Oulu, Ctr Wireless Commun, Oulu, Finland
来源
2020 2ND 6G WIRELESS SUMMIT (6G SUMMIT) | 2020年
关键词
mmWave; NOMA; user clustering; hierarchical clustering; machine learning; POWER ALLOCATION;
D O I
10.1109/6gsummit49458.2020.9083909
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Non-orthogonal multiple access (NOMA) and mmWave are two complementary technologies that can support the capacity demand that arises in SG and beyond networks. The increasing number of users are served simultaneously while providing a solution for the scarcity of the bandwidth. In this paper we present a method for clustering the users in a mmWave-NOMA system with the objective of maximizing the sum-rate. An unsupervised machine learning technique, namely, hierarchical clustering is utilized which does the automatic identification of the optimal number of clusters. The simulations prove that the proposed method can maximize the sum-rate of the system while satisfying the minimum QoS for all users without the need of the number of clusters as a prerequisite when compared to other clustering methods such as k-means clustering.
引用
收藏
页数:5
相关论文
共 19 条
[1]   Dynamic User Clustering and Power Allocation for Uplink and Downlink Non-Orthogonal Multiple Access (NOMA) Systems [J].
Ali, Md Shipon ;
Tabassum, Hina ;
Hossain, Ekram .
IEEE ACCESS, 2016, 4 :6325-6343
[2]   Non-Orthogonal Multiple Access (NOMA) for Downlink Multiuser MIMO Systems: User Clustering, Beamforming, and Power Allocation [J].
Ali, Shipon ;
Hossain, Ekram ;
Kim, Dong In .
IEEE ACCESS, 2017, 5 :565-577
[3]  
Benjebbour A, 2013, I S INTELL SIG PROC, P770, DOI 10.1109/ISPACS.2013.6704653
[4]   An Optimization Perspective of the Superiority of NOMA Compared to Conventional OMA [J].
Chen, Zhiyong ;
Ding, Zhiguo ;
Dai, Xuchu ;
Zhang, Rui .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (19) :5191-5202
[5]   Unsupervised Machine Learning-Based User Clustering in Millimeter-Wave-NOMA Systems [J].
Cui, Jingjing ;
Ding, Zhiguo ;
Fan, Pingzhi ;
Al-Dhahir, Naofal .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (11) :7425-7440
[6]   Optimal User Scheduling and Power Allocation for Millimeter Wave NOMA Systems [J].
Cui, Jingjing ;
Liu, Yuanwei ;
Ding, Zhiguo ;
Fan, Pingzhi ;
Nallanathan, Arumugam .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (03) :1502-1517
[7]   Random Beamforming in Millimeter-Wave NOMA Networks [J].
Ding, Zhiguo ;
Fan, Pingzhi ;
Poor, H. Vincent .
IEEE ACCESS, 2017, 5 :7667-7681
[8]   Spatially Sparse Precoding in Millimeter Wave MIMO Systems [J].
El Ayach, Omar ;
Rajagopal, Sridhar ;
Abu-Surra, Shadi ;
Pi, Zhouyue ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (03) :1499-1513
[9]   Fast agglomerative clustering using a k-nearest neighbor graph [J].
Franti, Pasi ;
Virmajoki, Olli ;
Hautamaki, Ville .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (11) :1875-1881
[10]   Randomly-Directional Beamforming in Millimeter-Wave Multiuser MISO Downlink [J].
Lee, Gilwon ;
Sung, Youngchul ;
Seo, Junyeong .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2016, 15 (02) :1086-1100