IMPROVED LOCAL ENERGY DECAY FOR THE WAVE EQUATION ON ASYMPTOTICALLY EUCLIDEAN ODD DIMENSIONAL MANIFOLDS IN THE SHORT RANGE CASE

被引:3
作者
Bony, Jean-Francois [1 ]
Haefner, Dietrich [2 ]
机构
[1] Univ Bordeaux 1, CNRS, UMR 5251, Inst Math Bordeaux, F-33405 Talence, France
[2] Univ Grenoble 1, CNRS, UMR 5582, Inst Fourier, F-38402 St Martin Dheres, France
关键词
local energy decay; resolvent smoothness; wave equation; odd dimensions; low frequencies; asymptotically Euclidean manifolds; RESONANCE; PERTURBATIONS;
D O I
10.1017/S1474748012000801
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show improved local energy decay for the wave equation on asymptotically Euclidean manifolds in odd dimensions in the short range case. The precise decay rate depends on the decay of the metric towards the Euclidean metric. We also give estimates of powers of the resolvent of the wave propagator between weighted spaces.
引用
收藏
页码:635 / 650
页数:16
相关论文
共 25 条