Regular vector lattices of continuous functions and Korovkin-type theorems - Part II

被引:8
作者
Altomare, F [1 ]
Cappelletti Montano, M [1 ]
机构
[1] Univ Bari, Dept Math, I-70125 Bari, Italy
关键词
positive operator; positive projection; finitely defined operator; Korovkin-type approximation theorem; vector lattice of continuous functions;
D O I
10.4064/sm172-1-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By applying the results of the first part of the paper, we establish some Korovkin-type theorems for continuous positive linear operators in the setting of regular vector lattices of continuous functions. Moreover, we present simple methods to construct Korovkin subspaces for finitely defined operators and for the identity operator and we determine those classes of operators which admit finite-dimensional Korovkin subspaces. Finally, we give a Korovkin-type theorem for continuous positive projections.
引用
收藏
页码:69 / 90
页数:22
相关论文
共 18 条
[1]   Regular vector lattices of continuous functions and Korovkin-type theorems - Part I [J].
Altomare, F ;
Cappelletti Montano, M .
STUDIA MATHEMATICA, 2005, 171 (03) :239-260
[2]   Affine projections on adapted subalgebras of continuous functions [J].
Altomare, F ;
Cappelletti Montano, M .
POSITIVITY, 2005, 9 (04) :625-643
[3]  
ALTOMARE F., 1996, REND CIRC MAT PALE S, V40, P23
[4]  
[Anonymous], 1994, DEGRUYTER STUD MATH
[5]  
ATTALIENTI A, 1994, MATH JPN, V39, P291
[6]   THEOREMS OF KOROVKIN TYPE FOR ADAPTED SPACES [J].
BAUER, H .
ANNALES DE L INSTITUT FOURIER, 1973, 23 (04) :245-260
[7]   CONVERGENCE OF MONOTONE OPERATORS [J].
BAUER, H .
MATHEMATISCHE ZEITSCHRIFT, 1974, 136 (04) :315-330
[8]   KOROVKIN APPROXIMATION IN C-O(X) [J].
BAUER, H ;
DONNER, K .
MATHEMATISCHE ANNALEN, 1978, 236 (03) :225-237
[9]  
CHOQUET G., 1969, LECT ANAL, VI
[10]  
FLOSSER HO, 1981, P LOND MATH SOC, V42, P104