Legendre spectral element method for solving sine-Gordon equation

被引:7
作者
Lotfi, Mahmoud [1 ]
Alipanah, Amjad [1 ]
机构
[1] Univ Kurdistan, Dept Appl Math, Sanandaj, Iran
关键词
Sine-Gordon equation; Legendre spectral element method; Leap-frog method; NUMERICAL-SOLUTION; APPROXIMATION; FLOW;
D O I
10.1186/s13662-019-2059-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Legendre spectral element method for solving the sine-Gordon equation in one dimension. Firstly, we discretize the equation by Legendre spectral element in space and then discretize the time by the second-order leap-frog method. We study the stability and convergence of the method and show the convergence of our method. Finally, we show the results with numerical examples.
引用
收藏
页数:15
相关论文
共 40 条
[31]   The choice of spectral element basis functions in domains with an axis of symmetry [J].
van Os, R. G. M. ;
Phillips, T. N. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 201 (01) :217-229
[32]   An improved time-splitting method for simulating natural convection heat transfer in a square cavity by Legendre spectral element approximation [J].
Wang, Yazhou ;
Qin, Guoliang .
COMPUTERS & FLUIDS, 2018, 174 :122-134
[33]   A variable separated ODE method for solving the triple sine-Gordon and the triple sinh-Gordon equations [J].
Wazwaz, Abdul-Majid .
CHAOS SOLITONS & FRACTALS, 2007, 33 (02) :703-710
[34]   Discrete singular convolution for the sine-Gordon equation [J].
Wei, GW .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 137 (3-4) :247-259
[35]   A spectral element method for the time-dependent two-dimensional Euler equations: applications to flow simulations [J].
Xu, CJ ;
Maday, Y .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 91 (01) :63-85
[36]  
Yousif M.A., 2017, J. Assoc. Arab. Univ. Basic Appl. Sci, V22, P83, DOI [10.1016/j.jaubas.2015.10.003, DOI 10.1016/J.JAUBAS.2015.10.003]
[37]   Approximation of acoustic waves by explicit Newmark's schemes and spectral element methods [J].
Zampieri, E ;
Pavarino, LE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 185 (02) :308-325
[38]   An explicit second order spectral element method for acoustic waves [J].
Zampieri, Elena ;
Pavarino, Luca F. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (04) :381-401
[39]  
Zeng Fan-hai, 2011, Journal of Shanghai University, V17, P724, DOI 10.3969/j.issn.1007-2861.2011.06.007
[40]  
Zhuang Q., LEGENDRE GALERKIN SP