Legendre spectral element method for solving sine-Gordon equation

被引:7
作者
Lotfi, Mahmoud [1 ]
Alipanah, Amjad [1 ]
机构
[1] Univ Kurdistan, Dept Appl Math, Sanandaj, Iran
关键词
Sine-Gordon equation; Legendre spectral element method; Leap-frog method; NUMERICAL-SOLUTION; APPROXIMATION; FLOW;
D O I
10.1186/s13662-019-2059-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Legendre spectral element method for solving the sine-Gordon equation in one dimension. Firstly, we discretize the equation by Legendre spectral element in space and then discretize the time by the second-order leap-frog method. We study the stability and convergence of the method and show the convergence of our method. Finally, we show the results with numerical examples.
引用
收藏
页数:15
相关论文
共 40 条
[1]   Diagonalized Legendre spectral methods using Sobolev orthogonal polynomials for elliptic boundary value problems [J].
Ai, Qing ;
Li, Hui-yuan ;
Wang, Zhong-qing .
APPLIED NUMERICAL MATHEMATICS, 2018, 127 :196-210
[2]  
[Anonymous], 2013, Theory and practice of finite elements
[3]   FINITE-ELEMENT APPROXIMATION TO 2-DIMENSIONAL SINE-GORDON SOLITONS [J].
ARGYRIS, J ;
HAASE, M ;
HEINRICH, JC .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 86 (01) :1-26
[4]   Superconvergence of the local discontinuous Galerkin method for the sine-Gordon equation in one space dimension [J].
Baccouch, Mahboub .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 333 :292-313
[5]  
Bathe KJ., 1995, FINITE ELEMENT PROCE
[6]  
Bernardi C., 1997, Handbook of Numerical Analysis, Vvol. 5
[7]   A fourth order numerical scheme for the one-dimensional sine-Gordon equation [J].
Bratsos, A. G. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (07) :1083-1095
[8]   Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations [J].
Chen, Yanping ;
Yi, Nianyu ;
Liu, Wenbin .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2254-2275
[9]  
Courant R., 1943, Amer. Math. Soc. Bull., V49, P1, DOI 10.1090/S0002-9904-1943-07818-4
[10]   The stability spectrum for elliptic solutions to the sine-Gordon equation [J].
Deconinck, Bernard ;
McGill, Peter ;
Segal, Benjamin L. .
PHYSICA D-NONLINEAR PHENOMENA, 2017, 360 :17-35