Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering

被引:28
作者
Kamenskyi, D. [1 ]
Engelkamp, H. [2 ]
Fischer, T. [1 ]
Uhlarz, M. [1 ]
Wosnitza, J. [1 ]
Gorshunov, B. P. [3 ,4 ,5 ]
Komandin, G. A. [3 ]
Prokhorov, A. S. [3 ,4 ]
Dressel, M. [5 ]
Bush, A. A. [6 ]
Torgashev, V. I. [7 ]
Pronin, A. V. [1 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Dresden High Magnet Field Lab HLD, D-01314 Dresden, Germany
[2] Radboud Univ Nijmegen, Inst Mol & Mat, High Field Magnet Lab, NL-6525 ED Nijmegen, Netherlands
[3] Russian Acad Sci, AM Prokhorov Inst Gen Phys, Moscow 119991, Russia
[4] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
[5] Univ Stuttgart, Inst Phys 1, D-70550 Stuttgart, Germany
[6] Tech Univ, Moscow State Inst Radioengn Elect & Automat, Moscow 117464, Russia
[7] Southern Fed Univ, Fac Phys, Rostov Na Donu 344090, Russia
基金
俄罗斯基础研究基金会;
关键词
RESONANCE;
D O I
10.1103/PhysRevB.87.134423
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on an investigation of optical properties of multiferroic CoCr2O4 at terahertz frequencies in magnetic fields up to 30 T. Below the ferrimagnetic transition (94 K), the terahertz response of CoCr2O4 is dominated by a magnon mode, which shows a steep magnetic-field dependence. We ascribe this mode to an exchange resonance between two magnetic sublattices with different g factors. In the framework of a simple two-sublattice model (the sublattices are formed by Co2+ and Cr3+ ions), we find the inter-sublattice coupling constant, lambda = -(18 +/- 1) K, and trace the magnetization for each sublattice as a function of field. We show that the Curie temperature of the Cr3+ sublattice, Theta(2) = (49 +/- 2) K, coincides with the temperature range, where anomalies of the dielectric and magnetic properties of CoCr2O4 have been reported in literature.
引用
收藏
页数:5
相关论文
共 27 条
[1]  
Altshuler S., 1974, ELECT PARAMAGNETIC R
[2]  
CASADO PG, 1986, POLYHEDRON, V5, P787
[3]   Crossover from incommensurate to commensurate magnetic orderings in CoCr2O4 [J].
Chang, L. J. ;
Huang, D. J. ;
Li, W-H ;
Cheong, S-W ;
Ratcliff, W. ;
Lynn, J. W. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (45)
[4]   Thermally or Magnetically Induced Polarization Reversal in the Multiferroic CoCr2O4 [J].
Choi, Y. J. ;
Okamoto, J. ;
Huang, D. J. ;
Chao, K. S. ;
Lin, H. J. ;
Chen, C. T. ;
van Veenendaal, M. ;
Kaplan, T. A. ;
Cheong, S-W. .
PHYSICAL REVIEW LETTERS, 2009, 102 (06)
[5]   MAGNETIC RESONANCE OF C0CR2O4 AND MNCR2O4 [J].
FUNAHASHI, S ;
SIRATORI, K ;
TOMONO, Y .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1970, 29 (05) :1179-+
[6]   Terahertz BWO-spectrosopy [J].
Gorshunov, B ;
Volkov, A ;
Spektor, I ;
Prokhorov, A ;
Mukhin, A ;
Dressel, M ;
Uchida, S ;
Loidl, A .
INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2005, 26 (09) :1217-1240
[7]   EXCHANGE FREQUENCY ELECTRON SPIN RESONANCE IN FERRITES [J].
KAPLAN, J ;
KITTEL, C .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (04) :760-761
[8]   APPROXIMATE THEORY OF FERRIMAGNETIC SPIN WAVES [J].
KAPLAN, TA .
PHYSICAL REVIEW, 1958, 109 (03) :782-787
[9]   Magnetic control of ferroelectric polarization [J].
Kimura, T ;
Goto, T ;
Shintani, H ;
Ishizaka, K ;
Arima, T ;
Tokura, Y .
NATURE, 2003, 426 (6962) :55-58
[10]  
Kozlov G, 1998, TOP APPL PHYS, V74, P51