On Deformable Hypersurfaces in Space Forms

被引:24
作者
Dajczer, M. [1 ]
Florit, L. [1 ]
Tojeiro, R. [2 ]
机构
[1] IMPA, Estrada Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Uberlandia, Uberlandia, MG, Brazil
关键词
Large Family; Space Form; Hyperbolic Space; Unique Deformation; Euclidean Hypersurface;
D O I
10.1007/BF01759378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first extend the classical Sbrana-Cartan theory of isometrically deformable euclidean hypersurfaces to the sphere and hyperbolic space. Then we construct and characterize a large family of hypersurfaces which admit a unique deformation. This is used to show, by means of explicit examples, that different types of hypersurfaces in the Sbrana-Cartan classification can be smoothly attached. Finally, among other applications, we discuss the existence of complete deformable hypersurfaces in hyperbolic space.
引用
收藏
页码:361 / 390
页数:30
相关论文
共 21 条
  • [1] Bianchi L, 1905, MEM SOC IT SC, VXIII, P261
  • [2] BIANCHI L, 1930, LEZIONI GEOMETERIA D, V2
  • [3] Bompiani E, 1917, CR HEBD ACAD SCI, V164, P508
  • [4] BOMPIANI E, 1915, REND ACCAD LINCEI, V24, P126
  • [5] Cartan E, 1916, B SOC MATH FRANCE, V44, P65
  • [6] CARTAN E., 1917, B SOC MATH FRANCE, V44, P57
  • [7] DAJCZER M, 1985, J DIFFER GEOM, V22, P1
  • [8] EUCLIDEAN HYPERSURFACES WITH ISOMETRIC GAUSS MAPS
    DAJCZER, M
    GROMOLL, D
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1986, 191 (02) : 201 - 205
  • [9] ISOMETRIC DEFORMATIONS OF COMPACT EUCLIDEAN SUBMANIFOLDS IN CODIMENSION-2
    DAJCZER, M
    GROMOLL, D
    [J]. DUKE MATHEMATICAL JOURNAL, 1995, 79 (03) : 605 - 618
  • [10] DAJCZER M, 1985, J DIFFER GEOM, V22, P13