On Deformable Hypersurfaces in Space Forms

被引:25
作者
Dajczer, M. [1 ]
Florit, L. [1 ]
Tojeiro, R. [2 ]
机构
[1] IMPA, Estrada Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Uberlandia, Uberlandia, MG, Brazil
关键词
Large Family; Space Form; Hyperbolic Space; Unique Deformation; Euclidean Hypersurface;
D O I
10.1007/BF01759378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first extend the classical Sbrana-Cartan theory of isometrically deformable euclidean hypersurfaces to the sphere and hyperbolic space. Then we construct and characterize a large family of hypersurfaces which admit a unique deformation. This is used to show, by means of explicit examples, that different types of hypersurfaces in the Sbrana-Cartan classification can be smoothly attached. Finally, among other applications, we discuss the existence of complete deformable hypersurfaces in hyperbolic space.
引用
收藏
页码:361 / 390
页数:30
相关论文
共 21 条
[1]  
Bianchi L, 1905, MEM SOC IT SC, VXIII, P261
[2]  
BIANCHI L, 1930, LEZIONI GEOMETERIA D, V2
[3]  
Bompiani E, 1917, CR HEBD ACAD SCI, V164, P508
[4]  
BOMPIANI E, 1915, REND ACCAD LINCEI, V24, P126
[5]  
Cartan E, 1916, B SOC MATH FRANCE, V44, P65
[6]  
CARTAN E., 1917, B SOC MATH FRANCE, V44, P57
[7]  
DAJCZER M, 1985, J DIFFER GEOM, V22, P1
[8]   EUCLIDEAN HYPERSURFACES WITH ISOMETRIC GAUSS MAPS [J].
DAJCZER, M ;
GROMOLL, D .
MATHEMATISCHE ZEITSCHRIFT, 1986, 191 (02) :201-205
[9]   ISOMETRIC DEFORMATIONS OF COMPACT EUCLIDEAN SUBMANIFOLDS IN CODIMENSION-2 [J].
DAJCZER, M ;
GROMOLL, D .
DUKE MATHEMATICAL JOURNAL, 1995, 79 (03) :605-618
[10]  
DAJCZER M, 1985, J DIFFER GEOM, V22, P13