Asymptotics of the solution of a Dirichlet spectral problem in a junction with highly oscillating boundary

被引:13
作者
Amirat, Youcef [2 ]
Chechkin, Gregory A. [3 ,4 ]
Gadyl'shin, Rustem R. [1 ]
机构
[1] Bashkir State Pedag Univ, Fac Phys & Math, Dept Math Anal, Ufa 450000, Russia
[2] Univ Clermont Ferrand, CNRS, Math Lab, UMR 6620, F-63177 Aubiere, France
[3] Moscow MV Lomonosov State Univ, Fac Mech & Math, Dept Differential Equat, Moscow 119991, Russia
[4] Narvik Univ Coll, N-8505 Narvik, Norway
来源
COMPTES RENDUS MECANIQUE | 2008年 / 336卷 / 09期
关键词
asymptotic expansion; spectral problem; oscillating boundary;
D O I
10.1016/j.crme.2008.06.008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the asymptotic behavior of the eigenelements of the Dirichlet problem for the Laplacian in a bounded domain, a part of whose boundary, depending on a small parameters, is highly oscillating; the frequency of oscillations of the boundary is of order epsilon and the amplitude is fixed. We present second-order asymptotic approximations, as epsilon -> 0, of the eigenelements in the case of simple eigenvalues of the limit problem.
引用
收藏
页码:693 / 698
页数:6
相关论文
共 50 条