Velocity width of the resonant domain in wave-particle interaction

被引:10
作者
Firpo, MC
Doveil, F
机构
[1] Univ Aix Marseille 1, CNRS, Unite 6633, Equipe Turbulence Plasma,Ctr St Jerome, F-13397 Marseille 20, France
[2] Univ Florence, Dipartimento Energet Sergio Stecco, I-50139 Florence, Italy
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 01期
关键词
D O I
10.1103/PhysRevE.65.016411
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Wave-particle interaction is a ubiquitous physical mechanism exhibiting locality in velocity space. A single-wave Hamiltonian provides a rich model by which to study the self-consistent interaction between one electrostatic wave and N quasiresonant particles, For the simplest nonintegrable Hamiltonian coupling two particles to one wave, we analytically derive the particle velocity borders separating quasi-integrable motions from chaotic ones, These estimates are fully retrieved through computation of the largest Lyapunov exponent, For the large-N particle self-consistent case, we numerically investigate the localization of stochasticity in velocity space and test a qualitative estimate of the borders of chaos.
引用
收藏
页码:1 / 016411
页数:8
相关论文
共 34 条
[1]   Explicit reduction of N-body dynamics to self-consistent particle-wave interaction [J].
Antoni, M ;
Elskens, Y ;
Escande, DF .
PHYSICS OF PLASMAS, 1998, 5 (04) :841-852
[2]   Nonlinear dynamics of a driven mode near marginal stability [J].
Berk, HL ;
Breizman, BN ;
Pekker, M .
PHYSICAL REVIEW LETTERS, 1996, 76 (08) :1256-1259
[3]  
Berk HL, 1997, PLASMA PHYS REP, V23, P778
[4]   THEORY OF PLASMA OSCILLATIONS .A. ORIGIN OF MEDIUM-LIKE BEHAVIOR [J].
BOHM, D ;
GROSS, EP .
PHYSICAL REVIEW, 1949, 75 (12) :1851-1864
[5]   THEORY OF PLASMA OSCILLATIONS .B. EXCITATION AND DAMPING OF OSCILLATIONS [J].
BOHM, D ;
GROSS, EP .
PHYSICAL REVIEW, 1949, 75 (12) :1864-1876
[6]   AN EXPLICIT SYMPLECTIC INTEGRATION SCHEME FOR PLASMA SIMULATIONS [J].
CARY, JR ;
DOXAS, I .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 107 (01) :98-104
[7]   Geometric approach to Hamiltonian dynamics and statistical mechanics [J].
Casetti, L ;
Pettini, M ;
Cohen, EGD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 337 (03) :237-341
[8]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[9]   First principles justification of a "single wave model" for electrostatic instabilities [J].
Crawford, JD ;
Jayaraman, A .
PHYSICS OF PLASMAS, 1999, 6 (03) :666-673
[10]   Weakly nonlinear dynamics of electrostatic perturbations in marginally stable plasmas [J].
del-Castillo-Negrete, D .
PHYSICS OF PLASMAS, 1998, 5 (11) :3886-3900