INTEGRABILITY AND BIFURCATIONS OF LIMIT CYCLES IN A CUBIC KOLMOGOROV SYSTEM

被引:6
作者
Feng, Li [1 ]
机构
[1] Linyi Univ, Sch Sci, Linyi, Shandong, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2013年 / 23卷 / 04期
关键词
Kolmogorov systems; center-focus problem; Lyapunov constant; limit circle;
D O I
10.1142/S0218127413500612
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the planar cubic Kolmogorov systems with three invariant algebraic curves which have a equilibrium at (1, 1). With the help of computer algebra system MATHEMATICA, we prove that five limit cycles can be bifurcated from a critical point in the first quadrant. Moreover, the necessary conditions of center are obtained, by technical transformation, and its sufficiencies are proved.
引用
收藏
页数:6
相关论文
共 6 条
[1]  
COLEMAN CS, 1978, DIFF EQUAT, V1, P279
[3]   Limit cycles in a general Kolmogorov model [J].
Huang, XC ;
Zhu, LM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (08) :1393-1414
[4]  
Liu X. S., 2001, J BIOMATH, V3, P266
[5]  
Liu Y., 1989, SCI CHINA SER A, V3, P245
[6]  
Ye Y., 1985, ANN DIFF EQS, V2, P201