Collective heat capacity for quantum thermometry and quantum engine enhancements

被引:28
|
作者
Latune, C. L. [1 ,2 ]
Sinayskiy, I [1 ]
Petruccione, F. [1 ,2 ,3 ]
机构
[1] Univ KwaZulu Natal, Sch Chem & Phys, Quantum Res Grp, ZA-4001 Durban, Kwazulu Natal, South Africa
[2] Natl Inst Theoret Phys NITheP, ZA-4001 Kwa Zulu, South Africa
[3] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
来源
NEW JOURNAL OF PHYSICS | 2020年 / 22卷 / 08期
基金
新加坡国家研究基金会;
关键词
quantum thermodynamics; quantum thermometry; collective effects; collective spin interaction; collective heat capacity; quantum heat engines; TEMPERATURE;
D O I
10.1088/1367-2630/aba463
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The performances of quantum thermometry in thermal equilibrium together with the output power of certain class of quantum engines share a common characteristic: both are determined by the heat capacity of the probe or working medium. After noticing that the heat capacity of spin ensembles can be significantly modified by collective coupling with a thermal bath, we build on the above observation to investigate the respective impact of such collective effect on quantum thermometry and quantum engines. We find that the precision of the temperature estimation is largely increased at high temperatures, reaching even the Heisenberg scaling-inversely proportional to the number of spins. For Otto engines operating close to the Carnot efficiency, collective coupling always enhances the output power. Some tangible experimental platforms are suggested.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] An out-of-equilibrium non-Markovian quantum heat engine
    Pezzutto, Marco
    Paternostro, Mauro
    Omar, Yasser
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (02)
  • [32] Magneto-strain driven quantum heat engine on a graphene flake
    Munoz, E.
    Pena, F. J.
    SPINTRONICS IX, 2016, 9931
  • [33] Diamond quantum thermometry: from foundations to applications
    Fujiwara, Masazumi
    Shikano, Yutaka
    NANOTECHNOLOGY, 2021, 32 (48)
  • [34] Thermometry in the quantum regime: recent theoretical progress
    Mehboudi, Mohammad
    Sanpera, Anna
    Correa, Luis A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (30)
  • [35] Mixing thermal coherent states for precision and range enhancement in quantum thermometry
    Ullah, Asghar
    Naseem, M. Tahir
    Mustecaplioglu, Ozgur E.
    QUANTUM SCIENCE AND TECHNOLOGY, 2025, 10 (01):
  • [36] A quantum Otto engine with shortcuts to thermalization and adiabaticity
    Pedram, A.
    Kadioglu, S. C.
    Kabakcioglu, A.
    Mustecaplioglu, O. E.
    NEW JOURNAL OF PHYSICS, 2023, 25 (11):
  • [37] The Josephson junction as a quantum engine
    Alicki, Robert
    Horodecki, Michal
    Jenkins, Alejandro
    Lobejko, Marcin
    Suarez, Gerardo
    NEW JOURNAL OF PHYSICS, 2023, 25 (11):
  • [38] Thermal conductivity of carbon nanotubes with quantum correction via heat capacity
    Wu, Michael C. H.
    Hsu, Jang-Yu
    NANOTECHNOLOGY, 2009, 20 (14)
  • [39] Quantum limit of the Carnot engine
    Tonner, Friedemann
    Mahler, Guenter
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2006, 54 (8-10): : 939 - 956
  • [40] Operational significance of nonclassicality in nonequilibrium Gaussian quantum thermometry
    Mirkhalaf, Safoura
    Mehboudi, Mohammad
    Qaleh, Zohre Nafari
    Rahimi-Keshari, Saleh
    NEW JOURNAL OF PHYSICS, 2024, 26 (02):