Collective heat capacity for quantum thermometry and quantum engine enhancements

被引:28
|
作者
Latune, C. L. [1 ,2 ]
Sinayskiy, I [1 ]
Petruccione, F. [1 ,2 ,3 ]
机构
[1] Univ KwaZulu Natal, Sch Chem & Phys, Quantum Res Grp, ZA-4001 Durban, Kwazulu Natal, South Africa
[2] Natl Inst Theoret Phys NITheP, ZA-4001 Kwa Zulu, South Africa
[3] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
来源
NEW JOURNAL OF PHYSICS | 2020年 / 22卷 / 08期
基金
新加坡国家研究基金会;
关键词
quantum thermodynamics; quantum thermometry; collective effects; collective spin interaction; collective heat capacity; quantum heat engines; TEMPERATURE;
D O I
10.1088/1367-2630/aba463
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The performances of quantum thermometry in thermal equilibrium together with the output power of certain class of quantum engines share a common characteristic: both are determined by the heat capacity of the probe or working medium. After noticing that the heat capacity of spin ensembles can be significantly modified by collective coupling with a thermal bath, we build on the above observation to investigate the respective impact of such collective effect on quantum thermometry and quantum engines. We find that the precision of the temperature estimation is largely increased at high temperatures, reaching even the Heisenberg scaling-inversely proportional to the number of spins. For Otto engines operating close to the Carnot efficiency, collective coupling always enhances the output power. Some tangible experimental platforms are suggested.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] The Quantum Otto Heat Engine with a Relativistically Moving Thermal Bath
    Papadatos, Nikolaos
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (11-12) : 4210 - 4223
  • [22] A quantum Szilard engine without heat from a thermal reservoir
    Mohammady, M. Hamed
    Anders, Janet
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [23] Quantum thermometry in a squeezed thermal bath
    Jahromi, H. Rangani
    PHYSICA SCRIPTA, 2020, 95 (03)
  • [24] Calibrated quantum thermometry in cavity optomechanics
    Chowdhury, A.
    Vezio, P.
    Bonaldi, M.
    Borrielli, A.
    Marino, F.
    Morana, B.
    Pandraud, G.
    Pontin, A.
    Prodi, G. A.
    Sarro, M.
    Serra, E.
    Marin, F.
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (02)
  • [25] Coupled quantum Otto heat engine and refrigerator with inner friction
    Turkpence, Deniz
    Altintas, Ferdi
    QUANTUM INFORMATION PROCESSING, 2019, 18 (08)
  • [26] Coupled quantum Otto heat engine and refrigerator with inner friction
    Deniz Türkpençe
    Ferdi Altintas
    Quantum Information Processing, 2019, 18
  • [27] Learning coherences from nonequilibrium fluctuations in a quantum heat engine
    Sarmah, Manash Jyoti
    Goswami, Himangshu Prabal
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 627
  • [28] Quantum Otto engine driven by quantum fields
    Gallock-Yoshimura, Kensuke
    Thakur, Vaishant
    Mann, Robert B.
    FRONTIERS IN PHYSICS, 2023, 11
  • [29] Quantum Mechanical Engine for the Quantum Rabi Model
    Alvarado Barrios, Gabriel
    Pena, Francisco J.
    Albarran-Arriagada, Francisco
    Vargas, Patricio
    Carlos Retamal, Juan
    ENTROPY, 2018, 20 (10):
  • [30] A feasible quantum heat engine driven by dipole-dipole interaction
    Cakmak, Selcuk
    PHYSICS LETTERS A, 2022, 422