Collective heat capacity for quantum thermometry and quantum engine enhancements

被引:28
|
作者
Latune, C. L. [1 ,2 ]
Sinayskiy, I [1 ]
Petruccione, F. [1 ,2 ,3 ]
机构
[1] Univ KwaZulu Natal, Sch Chem & Phys, Quantum Res Grp, ZA-4001 Durban, Kwazulu Natal, South Africa
[2] Natl Inst Theoret Phys NITheP, ZA-4001 Kwa Zulu, South Africa
[3] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
来源
NEW JOURNAL OF PHYSICS | 2020年 / 22卷 / 08期
基金
新加坡国家研究基金会;
关键词
quantum thermodynamics; quantum thermometry; collective effects; collective spin interaction; collective heat capacity; quantum heat engines; TEMPERATURE;
D O I
10.1088/1367-2630/aba463
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The performances of quantum thermometry in thermal equilibrium together with the output power of certain class of quantum engines share a common characteristic: both are determined by the heat capacity of the probe or working medium. After noticing that the heat capacity of spin ensembles can be significantly modified by collective coupling with a thermal bath, we build on the above observation to investigate the respective impact of such collective effect on quantum thermometry and quantum engines. We find that the precision of the temperature estimation is largely increased at high temperatures, reaching even the Heisenberg scaling-inversely proportional to the number of spins. For Otto engines operating close to the Carnot efficiency, collective coupling always enhances the output power. Some tangible experimental platforms are suggested.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Quantum coherence in a quantum heat engine
    Shi, Yun-Hao
    Shi, Hai-Long
    Wang, Xiao-Hui
    Hu, Ming-Liang
    Liu, Si-Yuan
    Yang, Wen-Li
    Fan, Heng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (08)
  • [2] Quantum Thermometry
    Mann, Robert B.
    Martin-Martinez, Eduardo
    FOUNDATIONS OF PHYSICS, 2014, 44 (05) : 492 - 511
  • [3] Quantum Thermometry
    Robert B. Mann
    Eduardo Martín-Martínez
    Foundations of Physics, 2014, 44 : 492 - 511
  • [4] Nonequilibrium fluctuations of a quantum heat engine
    Denzler, Tobias
    Santos, Jonas F. G.
    Lutz, Eric
    Serra, Roberto M.
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (04):
  • [5] Quantum confinement and negative heat capacity
    Serra, Pablo
    Carignano, Marcelo A.
    Alharbi, Fahhad H.
    Kais, Sabre
    EPL, 2013, 104 (01)
  • [6] Quantum Heat Engine and Negative Boltzmann Temperature
    Xi, Jing-Yi
    Quan, Hai-Tao
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 68 (03) : 347 - 356
  • [7] Quantum Heat Engine and Negative Boltzmann Temperature
    席静怡
    全海涛
    CommunicationsinTheoreticalPhysics, 2017, 68 (09) : 347 - 356
  • [8] Construction of a quantum Carnot heat engine cycle
    Selçuk Çakmak
    Mustafa Çandır
    Ferdi Altintas
    Quantum Information Processing, 2020, 19
  • [9] Construction of a quantum Carnot heat engine cycle
    Cakmak, Selcuk
    Candir, Mustafa
    Altintas, Ferdi
    QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [10] A nuclear quadrupolar spin quantum heat engine
    Cakmak, Selcuk
    Altintas, Ferdi
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2022, 55 (13)