Similarity measures for Collaborative Filtering-based Recommender Systems: Review and experimental comparison

被引:36
|
作者
Fkih, Fethi [1 ,2 ,3 ]
机构
[1] Qassim Univ, Coll Comp, Dept Comp Sci, Buraydah, Saudi Arabia
[2] Qassim Univ, Coll Comp, BIND Res Grp, Buraydah, Saudi Arabia
[3] Univ Sousse, MARS Res Lab, Sousse, Tunisia
关键词
Recommender System; Collaborative Filtering; Similarity measure; User -based CF; Item -based CF; GOODNESS-OF-FIT; ASSOCIATION;
D O I
10.1016/j.jksuci.2021.09.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Collaborative Filtering (CF) filters the flow of data that can be recommended, by a Recommender System (RS), to a target user according to his taste and his preferences. The target user's profile is built based on his similarity with other users. For this reason, CF technique is very sensitive to the similarity measure used to quantify the dependency strength between two users (or two items). In this paper we provide an in-depth review on similarity measures used for CF-based RS. For each measure, we outline its funda-mental background and we test its performance through an experimental study. Experiments are carried out on three standard datasets (MovieLens100k, MovieLens1M and Jester) and reveal many important conclusions. In fact, results show that ITR and IPWR are the most suitable similarity measures for a user-based RS while AMI is the best choice for an item-based RS. Evaluation metrics show that under the user-based approach, ITR obtains an MAE equal to 0.786 and 0.731 on MovieLens100k and MovieLens1M, respectively. Whereas, IPWR reach an MAE equal to 3.256 on Jester. Also, AMI gets under the item-based approach an MAE equal to 0.745, 0.724 and 3.281 on MovieLens100k, MovieLens1M and Jester, respectively. (c) 2021 The Author. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:7645 / 7669
页数:25
相关论文
共 50 条
  • [1] Similarity Measures for Collaborative Filtering Recommender Systems
    Al Hassanieh, Lamis
    Abou Jaoudeh, Chadi
    Abdo, Jacques Bou
    Demerjian, Jacques
    2018 IEEE MIDDLE EAST AND NORTH AFRICA COMMUNICATIONS CONFERENCE (MENACOMM), 2018, : 165 - 169
  • [2] Collaborative filtering-based recommender systems by effective trust
    Faridani V.
    Jalali M.
    Jahan M.V.
    Jalali, Mehrdad (jalali@mshdiau.ac.ir), 1600, Springer Science and Business Media Deutschland GmbH (03): : 297 - 307
  • [3] Deep variational models for collaborative filtering-based recommender systems
    Bobadilla, Jesus
    Ortega, Fernando
    Gutierrez, Abraham
    Gonzalez-Prieto, Angel
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (10): : 7817 - 7831
  • [4] Fuzzy clustering with optimization for collaborative filtering-based recommender systems
    Soojung Lee
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 4189 - 4206
  • [5] Towards Poisoning the Neural Collaborative Filtering-Based Recommender Systems
    Zhang, Yihe
    Lou, Jiadong
    Chen, Li
    Yuan, Xu
    Li, Jin
    Johnsten, Tom
    Tzeng, Nian-Feng
    COMPUTER SECURITY - ESORICS 2020, PT I, 2020, 12308 : 461 - 479
  • [6] Fuzzy clustering with optimization for collaborative filtering-based recommender systems
    Lee, Soojung
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 13 (9) : 4189 - 4206
  • [7] Deep variational models for collaborative filtering-based recommender systems
    Jesús Bobadilla
    Fernando Ortega
    Abraham Gutiérrez
    Ángel González-Prieto
    Neural Computing and Applications, 2023, 35 : 7817 - 7831
  • [8] A Collaborative Filtering-Based Recommender Systems approach for Multifarious applications
    Shetty, Aryan
    Shetye, Aryan
    Shukla, Praful
    Singh, Aditya
    Vhatkar, Sangeeta
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (04) : 478 - 485
  • [9] Popularity Bias in Collaborative Filtering-Based Multimedia Recommender Systems
    Kowald, Dominik
    Lacic, Emanuel
    ADVANCES IN BIAS AND FAIRNESS IN INFORMATION RETRIEVAL, BIAS 2022, 2022, 1610 : 1 - 11
  • [10] Evolutionary approaches for weight optimization in collaborative filtering-based recommender systems
    Yigit Sert, Sevgi
    Ar, Yilmaz
    Bostanci, Erkan
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2019, 27 (03) : 2121 - 2136