VARIATIONAL METHODS FOR NON-LOCAL OPERATORS OF ELLIPTIC TYPE

被引:606
作者
Servadei, Raffaella [1 ]
Valdinoci, Enrico [2 ,3 ]
机构
[1] Univ Calabria, Dipartimento Matemat, I-87036 Cosenza, Italy
[2] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[3] Karl Weierstrass Inst Math, D-10117 Berlin, Germany
关键词
Mountain Pass Theorem; Linking Theorem; variational techniques; integrodifferential operators; fractional Laplacian;
D O I
10.3934/dcds.2013.33.2105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of non-trivial solutions for equations driven by a non-local integrodifferential operator L-K with homogeneous Dirichlet boundary conditions. More precisely, we consider the problem {L(K)u + lambda u + f(x, u) = 0 in Omega u = 0 in R-n backslash Omega, where lambda is a real parameter and the nonlinear term f satisfies superlinear and subcritical growth conditions at zero and at infinity. This equation has a variational nature, and so its solutions can be found as critical points of the energy functional J(lambda) associated to the problem. Here we get such critical points using both the Mountain Pass Theorem and the Linking Theorem, respectively when lambda < lambda(1) and lambda >= lambda(1), where lambda(1) denotes the first eigenvalue of the operator -L-K. As a particular case, we derive an existence theorem for the following equation driven by the fractional Laplacian {(-Delta)(s) u - lambda u = f (x, u) in Omega u = 0 in R-n backslash Omega. Thus, the results presented here may be seen as the extension of some classical nonlinear analysis theorems to the case of fractional operators.
引用
收藏
页码:2105 / 2137
页数:33
相关论文
共 14 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1986, CBMS REG C SER MATH
[3]  
Brezis H., 1983, ANAL FONCTIONELLE TH
[4]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[5]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[6]  
Felmer P., P ROY SOC EDINBURG A
[7]  
Rabinowitz P., 1978, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V5, P215
[8]  
Servadei R., T AM MATH SOC
[9]  
Servadei R., PREPRINT
[10]   Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators [J].
Servadei, Raffaella ;
Valdinoci, Enrico .
REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (03) :1091-1126