Dissolution of Platinum: Limits for the Deployment of Electrochemical Energy Conversion?

被引:350
|
作者
Topalov, Angel A. [1 ,2 ]
Katsounaros, Ioannis [1 ]
Auinger, Michael [1 ]
Cherevko, Serhiy [1 ]
Meier, Josef C. [1 ]
Klemm, Sebastian O. [1 ]
Mayrhofer, Karl J. J. [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, Dept Interface Chem & Surface Engn, D-40237 Dusseldorf, Germany
[2] Ruhr Univ Bochum, Ctr Electrochem Sci, D-44780 Bochum, Germany
关键词
catalyst stability; dissolution processes; electrochemistry; fuel cells; platinum; ELECTROLYTE FUEL-CELLS; OXYGEN REDUCTION; ICP-MS; CATALYSTS; ELECTROCATALYSTS; DEGRADATION; IRON;
D O I
10.1002/anie.201207256
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Platinum stability: Dissolution of Pt, which is one major degradation mechanism in, for example, hydrogen/air fuel cells, was monitored under potentiodynamic and potentiostatic conditions. The highly sensitive and time-resolving dissolution monitoring enables the distinction between anodic and cathodic dissolution processes during potential transient and chronoamperometric experiments, and the precise quantification of the amount of dissolved Pt. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:12613 / 12615
页数:3
相关论文
共 50 条
  • [41] Facetted platinum electrocatalysts for electrochemical energy converters
    Ramos, S. G.
    Moreno, M. S.
    Andreasen, G. A.
    Triaca, W. E.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (11) : 5925 - 5929
  • [42] Highly Durable Platinum Single-Atom Alloy Catalyst for Electrochemical Reactions
    Kim, Jiwhan
    Roh, Chi-Woo
    Sahoo, Suman Kalyan
    Yang, Sungeun
    Bae, Junemin
    Han, Jeong Woo
    Lee, Hyunjoo
    ADVANCED ENERGY MATERIALS, 2018, 8 (01)
  • [43] Stability and dissolution of single-crystalline iron oxide thin films in electrochemical environments
    Seidel, Peter
    Pomp, Sascha
    Schwarz, Florian
    Sterrer, Martin
    SURFACE SCIENCE, 2025, 751
  • [44] Platinum Oxide Nanoparticles for Electrochemical Hydrogen Evolution: Influence of Platinum Valence State
    Nichols, Forrest
    Lu, Jia En
    Mercado, Rene
    Dudschus, Ryan
    Bridges, Frank
    Chen, Shaowei
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (18) : 4136 - 4142
  • [45] Facile preparation and characterization of MXene@Platinum nanocomposite for energy conversion applications
    Thirumal, V.
    Yuvakkumar, R.
    Kumar, P. Senthil
    Ravi, G.
    Velauthapillai, Dhayalan
    FUEL, 2022, 317
  • [46] Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage
    Li, Gao-Ren
    Xu, Han
    Lu, Xue-Feng
    Feng, Jin-Xian
    Tong, Ye-Xiang
    Su, Cheng-Yong
    NANOSCALE, 2013, 5 (10) : 4056 - 4069
  • [47] Electrochemical valorization of crude glycerol in alkaline medium for energy conversion using Pd, Au and PdAu nanomaterials
    Velazquez-Hernandez, Isaac
    Zamudio, Evelyn
    Rodriguez-Valadez, Francisco J.
    Garcia-Gomez, Nora A.
    Alvarez-Contreras, Lorena
    Guerra-Balcazar, Minerva
    Arjona, Noe
    FUEL, 2020, 262
  • [48] Particle Size Effect on Platinum Dissolution: Practical Considerations for Fuel Cells
    Sandbeck, Daniel J. S.
    Inaba, Masanori
    Quinson, Jonathan
    Bucher, Jan
    Zana, Alessandro
    Arenz, Matthias
    Cherevko, Serhiy
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (23) : 25718 - 25727
  • [49] Temperature-Dependent Dissolution of Polycrystalline Platinum in Sulfuric Acid Electrolyte
    Cherevko, Serhiy
    Topalov, Angel A.
    Zeradjanin, Aleksandar R.
    Keeley, Gareth P.
    Mayrhofer, Karl J. J.
    ELECTROCATALYSIS, 2014, 5 (03) : 235 - 240
  • [50] Conducting-Polymer-Based Materials for Electrochemical Energy Conversion and Storage
    Wang, Jianfeng
    Wang, Jinrong
    Kong, Zhuang
    Lv, Kuilin
    Teng, Chao
    Zhu, Ying
    ADVANCED MATERIALS, 2017, 29 (45)