Stability of Timoshenko systems with thermal coupling on the bending moment

被引:13
作者
Cardozo, C. L. [1 ]
Jorge Silva, M. A. [1 ]
Ma, T. F. [2 ]
Munoz Rivera, J. E. [3 ,4 ]
机构
[1] Univ Estadual Londrina, Dept Math, BR-86057970 Londrina, Parana, Brazil
[2] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP, Brazil
[3] Natl Lab Sci Computat, BR-25651070 Petropolis, RJ, Brazil
[4] Univ Fed Rio de Janeiro, Inst Math, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
exponential stability; polynomial decay; thermoelasticity; Timoshenko system; GLOBAL EXISTENCE; ENERGY DECAY; RATES; STABILIZATION; SPECTRUM; FOURIER;
D O I
10.1002/mana.201800546
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Timoshenko system is a distinguished coupled pair of differential equations arising in mathematical elasticity. In the case of constant coefficients, if a damping is added in only one of its equations, it is well-known that exponential stability holds if and only if the wave speeds of both equations are equal. In the present paper we study both non-homogeneous and homogeneous thermoelastic problems where the model's coefficients are non-constant and constants, respectively. Our main stability results are proved by means of a unified approach that combines local estimates of the resolvent equation in the semigroup framework with a recent control-observability analysis for static systems. Therefore, our results complement all those on the linear case provided in [22], by extending the methodology employed in [4] to the case of Timoshenko systems with thermal coupling on the bending moment.
引用
收藏
页码:2537 / 2555
页数:19
相关论文
共 31 条
  • [1] Stability to weakly dissipative Timoshenko systems
    Almeida Junior, D. S.
    Santos, M. L.
    Munoz Rivera, J. E.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (14) : 1965 - 1976
  • [2] Stability to 1-D thermoelastic Timoshenko beam acting on shear force
    Almeida Junior, Dilberto da S.
    Santos, M. L.
    Munoz Rivera, J. E.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1233 - 1249
  • [3] Non-Homogeneous Thermoelastic Timoshenko Systems
    Alves, M. S.
    Jorge Silva, M. A.
    Ma, T. F.
    Munoz Rivera, J. E.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (03): : 461 - 484
  • [4] Invariance of decay rate with respect to boundary conditions in thermoelastic Timoshenko systems
    Alves, M. S.
    Jorge Silva, M. A.
    Ma, T. F.
    Munoz Rivera, J. E.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [5] Energy decay for Timoshenko systems of memory type
    Ammar-Khodja, F
    Benabdallah, A
    Rivera, JEM
    Racke, R
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) : 82 - 115
  • [6] Stabilization of the nonuniform Timoshenko beam
    Ammar-Khodja, Farid
    Kerbal, Sebti
    Soufyane, Abdelaziz
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) : 525 - 538
  • [7] [Anonymous], 1955, VIBRATIONS PROBLEMS
  • [8] [Anonymous], 1999, Chapman & Hall/CRC Research Notes in Mathematics
  • [9] Optimal polynomial decay of functions and operator semigroups
    Borichev, Alexander
    Tomilov, Yuri
    [J]. MATHEMATISCHE ANNALEN, 2010, 347 (02) : 455 - 478
  • [10] Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Falco Nascimento, F. A.
    Lasiecka, I.
    Rodrigues, J. H.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1189 - 1206