GENERALIZED RICCI FLOW I: HIGHER-DERIVATIVE ESTIMATES FOR COMPACT MANIFOLDS

被引:14
作者
Li, Yi [1 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
Ricci flow; Generalized Ricci flow; BBS derivative estimates; compactness theorems; energy functionals;
D O I
10.2140/apde.2012.5.747
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a generalized Ricci flow with a given (not necessarily closed) three-form and establish higher-derivative estimates for compact manifolds. As an application, we prove the compactness theorem for this generalized Ricci flow. Similar results still hold for a more generalized Ricci flow.
引用
收藏
页码:747 / 775
页数:29
相关论文
共 19 条
[1]  
[Anonymous], 2007, Clay Mathematics Institute Monographs
[2]  
[Anonymous], 2008, THESIS U TEXAS AUSTI
[3]  
[Anonymous], 2006, Grad. Stud. Math
[4]  
Bakas I., 2007, PREPRINT
[5]  
Cao HD, 2006, ASIAN J MATH, V10, P165
[6]  
Chow B, 2010, Mathematical Surveys and Monographs, V163
[7]  
Chow B., 2007, Mathematical Surveys and Monographs, V135
[8]  
Chow B., 2004, Mathematical Surveys and Monographs, V110
[9]  
Chow B., 2008, Mathematical Surveys and Monographs, V144
[10]   Using 3D string-inspired gravity to understand the Thurston conjecture [J].
Gegenberg, J ;
Kunstatter, G .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (04) :1197-1207