Enhanced Oxygen Evolution Reaction Activity by Encapsulating NiFe Alloy Nanoparticles in Nitrogen-Doped Carbon Nanofibers

被引:95
|
作者
Wei, Peng [1 ,2 ]
Sun, Xueping [2 ]
Liang, Qirui [3 ]
Li, Xiaogang [1 ]
He, Zhimin [2 ]
Hu, Xiangsheng [1 ]
Zhang, Jinxu [2 ]
Wang, Minhui [2 ]
Li, Qing [2 ]
Yang, Hui [1 ]
Han, Jiantao [2 ]
Huang, Yunhui [2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Mech, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[3] Fudan Univ, Dept Chem, Lab Adv Mat, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
oxygen evolution reaction; NiFe alloy; electrospinning; water splitting; HIGHLY EFFICIENT; BIFUNCTIONAL ELECTROCATALYST; ENERGY-CONVERSION; METAL; ALKALINE; REDUCTION; ARRAYS; SITES; NANOARRAYS; NANOSHEETS;
D O I
10.1021/acsami.0c08271
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The rational design and exploration of the oxygen evolution reaction (OER) electrocatalysts with high efficiency, low cost, and long-term durability are extremely important for overall water splitting. Recently, numerous studies have shown that the OER reaction kinetics can be modified by optimizing components, introducing carbon matrix, and regulating porous nanostructures. Herein, a flexible and controllable electrospinning strategy is proposed to construct porous nitrogen (N)-doped carbon (C) nanofibers (NFs) with nickel-iron (NiFe) alloy nanoparticles encapsulated inside (NiFe@NCNFs) as an OER electrocatalyst. Benefiting from the strong synergistic effects that stem from the one-dimensional mesoporous structures with optimized binary metal components encapsulated in the N-doped carbon nanofibers, the NiFe@NCNFs exhibits enhanced OER performance with a low overpotential (294 mV at 10 mA cm(-2)) and excellent durability (over 10 h at 10 mA cm(-2)) in alkaline solution. Both experimental characterizations and density functional theory (DFT) calculations validate that a suitable binary metal ratio can lead to the optimal catalytic activity. Moreover, a two-electrode electrolyzer is assembled by using NiFe@NCNFs anode and Pt/C cathode in 1.0 M KOH media for the overall water splitting, which delivers an initial cell voltage of only 1.531 V at 10 mA cm(-2), as well as long-term stability up to 20 h. This study sheds light on the design and large-scale production of low-cost and high-performance electrocatalysts toward different energy applications in the future.
引用
收藏
页码:31503 / 31513
页数:11
相关论文
共 50 条
  • [41] Fe doped CoO/C nanofibers towards efficient oxygen evolution reaction
    Li, Weimo
    Li, Meixuan
    Wang, Ce
    Wei, Yen
    Lu, Xiaofeng
    APPLIED SURFACE SCIENCE, 2020, 506
  • [42] Cobalt phosphate nanoparticles decorated with nitrogen-doped carbon layers as highly active and stable electrocatalysts for the oxygen evolution reaction
    Yuan, Cheng-Zong
    Jiang, Yi-Fan
    Wang, Zhou
    Xie, Xiao
    Yang, Zheng-Kun
    Bin Yousaf, Ammar
    Xu, An-Wu
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (21) : 8155 - 8160
  • [43] High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over nitrogen-doped carbon encapsulating CoNi nanoparticles
    Liu, Hengqi
    Hua, Daxing
    Wang, Ran
    Liu, Zhiguo
    Li, Jiajie
    Wang, Xianjie
    Song, Bo
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (48)
  • [44] Oxygen-Deficient NiFe2O4 Spinel Nanoparticles as an Enhanced Electrocatalyst for the Oxygen Evolution Reaction
    Lim, Dongwook
    Kong, Hyungseok
    Kim, Namil
    Lim, Chaewon
    Ahn, Wha-Seung
    Baeck, Sung-Hyeon
    CHEMNANOMAT, 2019, 5 (10) : 1296 - 1302
  • [45] Boosting oxygen evolution reaction activity by tailoring MOF-derived hierarchical Co-Ni alloy nanoparticles encapsulated in nitrogen-doped carbon frameworks
    Liu, Xiaobin
    Zhao, Xudong
    Fan, Li-Zhen
    RSC ADVANCES, 2021, 11 (18) : 10874 - 10880
  • [46] Nitrogen-doped hollow carbon spheres with highly graphitized mesoporous shell: Role of Fe for oxygen evolution reaction
    Song, Min Young
    Yang, Dae-Soo
    Singh, Kiran Pal
    Yuan, Jinliang
    Yu, Jong-Sung
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 191 : 202 - 208
  • [47] Investigating the active sites in molybdenum anchored nitrogen-doped carbon for alkaline oxygen evolution reaction
    Wang, Yuan
    Dong, Rui
    Tan, Pengfei
    Liu, Hongqin
    Liao, Hanxiao
    Jiang, Min
    Liu, Yong
    Yang, Lu
    Pan, Jun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 609 : 617 - 626
  • [48] CoOx electro-catalysts anchored on nitrogen-doped carbon nanotubes for the oxygen evolution reaction
    Singh, Santosh K.
    Takeyasu, Kotaro
    Paul, Bappi
    Sharma, Sachin K.
    Nakamura, Junji
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (03) : 820 - 827
  • [49] Bimetallic CoNi Alloy Nanoparticles Embedded in Pomegranate-like Nitrogen-Doped Carbon Spheres for Electrocatalytic Oxygen Reduction and Evolution
    Chen, Lu
    Xu, Zhixiao
    Han, Wenjie
    Zhang, Qing
    Bai, Zhengyu
    Chen, Zhi
    Li, Ge
    Wang, Xiaolei
    ACS APPLIED NANO MATERIALS, 2020, 3 (02) : 1354 - 1362
  • [50] Porous nitrogen-doped carbon nanofibers as highly efficient metal-free electrocatalyst for oxygen reduction reaction
    Yin, Jing
    Qiu, Yejun
    Yu, Jie
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 702 : 56 - 59