Enhanced Oxygen Evolution Reaction Activity by Encapsulating NiFe Alloy Nanoparticles in Nitrogen-Doped Carbon Nanofibers

被引:95
|
作者
Wei, Peng [1 ,2 ]
Sun, Xueping [2 ]
Liang, Qirui [3 ]
Li, Xiaogang [1 ]
He, Zhimin [2 ]
Hu, Xiangsheng [1 ]
Zhang, Jinxu [2 ]
Wang, Minhui [2 ]
Li, Qing [2 ]
Yang, Hui [1 ]
Han, Jiantao [2 ]
Huang, Yunhui [2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Mech, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[3] Fudan Univ, Dept Chem, Lab Adv Mat, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
oxygen evolution reaction; NiFe alloy; electrospinning; water splitting; HIGHLY EFFICIENT; BIFUNCTIONAL ELECTROCATALYST; ENERGY-CONVERSION; METAL; ALKALINE; REDUCTION; ARRAYS; SITES; NANOARRAYS; NANOSHEETS;
D O I
10.1021/acsami.0c08271
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The rational design and exploration of the oxygen evolution reaction (OER) electrocatalysts with high efficiency, low cost, and long-term durability are extremely important for overall water splitting. Recently, numerous studies have shown that the OER reaction kinetics can be modified by optimizing components, introducing carbon matrix, and regulating porous nanostructures. Herein, a flexible and controllable electrospinning strategy is proposed to construct porous nitrogen (N)-doped carbon (C) nanofibers (NFs) with nickel-iron (NiFe) alloy nanoparticles encapsulated inside (NiFe@NCNFs) as an OER electrocatalyst. Benefiting from the strong synergistic effects that stem from the one-dimensional mesoporous structures with optimized binary metal components encapsulated in the N-doped carbon nanofibers, the NiFe@NCNFs exhibits enhanced OER performance with a low overpotential (294 mV at 10 mA cm(-2)) and excellent durability (over 10 h at 10 mA cm(-2)) in alkaline solution. Both experimental characterizations and density functional theory (DFT) calculations validate that a suitable binary metal ratio can lead to the optimal catalytic activity. Moreover, a two-electrode electrolyzer is assembled by using NiFe@NCNFs anode and Pt/C cathode in 1.0 M KOH media for the overall water splitting, which delivers an initial cell voltage of only 1.531 V at 10 mA cm(-2), as well as long-term stability up to 20 h. This study sheds light on the design and large-scale production of low-cost and high-performance electrocatalysts toward different energy applications in the future.
引用
收藏
页码:31503 / 31513
页数:11
相关论文
共 50 条
  • [31] Nitrogen-Doped Sponge Ni Fibers as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction
    Zhang, Kaili
    Xia, Xinhui
    Deng, Shengjue
    Zhong, Yu
    Xie, Dong
    Pan, Guoxiang
    Wu, Jianbo
    Liu, Qi
    Wang, Xiuli
    Tu, Jiangping
    NANO-MICRO LETTERS, 2019, 11 (01)
  • [32] Carbon Nitride Anchored on a Nitrogen-Doped Carbon Nanotube Surface for Enhanced Oxygen Reduction Reaction
    Feng, Leiyu
    Wang, Tingting
    Sun, Han
    Jiang, Meng
    Chen, Yinguang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (51) : 56954 - 56962
  • [33] PtZn nanoparticles supported on porous nitrogen-doped carbon nanofibers as highly stable electrocatalysts for oxygen reduction reaction
    Zhao, Lei
    Jiang, Jinxia
    Xiao, Shuhao
    Li, Zhao
    Wang, Junjie
    Wei, Xinxin
    Kong, Qingquan
    Chen, Jun Song
    Wu, Rui
    NANO MATERIALS SCIENCE, 2023, 5 (03) : 329 - 334
  • [34] Oxygen Evolution Reaction Kinetic Barriers on Nitrogen-Doped Carbon Nanotubes
    Partanen, Lauri
    Murdachaew, Garold
    Laasonen, Kari
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (24) : 12892 - 12899
  • [35] Nitrogen-doped carbon confined NiFe-NiFeP nanocubes immobilized on carbon nanotube as an efficient electrocatalyst for oxygen evolution reaction
    Wang, Qian
    Xu, Guan-Cheng
    Liu, De -Jiang
    Ding, Hui
    Zhang, Li
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (34) : 12712 - 12722
  • [36] Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction
    Kang, Qiaoling
    Lai, Dawei
    Tang, Wenyin
    Lu, Qingyi
    Gao, Feng
    CHEMICAL SCIENCE, 2021, 12 (11) : 3818 - 3835
  • [37] Iron/nickel Alloy Nanoparticles Embedded in N-doped Porous Carbon for Robust Oxygen Evolution Reaction
    Wang Yilin
    Wang Minjie
    Li Jing
    Wei Zidong
    ACTA CHIMICA SINICA, 2019, 77 (01) : 84 - 89
  • [38] Nanosized Metal Phosphides Embedded in Nitrogen-Doped Porous Carbon Nanofibers for Enhanced Hydrogen Evolution at All pH Values
    Wang, Min-Qiang
    Ye, Cui
    Liu, Heng
    Xu, Maowen
    Bao, Shu-Juan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (07) : 1963 - 1967
  • [39] Enhanced oxygen evolution reaction performance of nitrogen-doped carbon dots sensitized with rare-earth metal nanorods
    Selvaraju, Nithya
    Sasi, Sheethal
    Sivalingam, Yuvaraj
    Venugopal, Gunasekaran
    DIAMOND AND RELATED MATERIALS, 2024, 148
  • [40] NiFe Alloy Nanoparticles Tuning the Structure, Magnetism, and Application for Oxygen Evolution Reaction Catalysis
    Raimundo, Rafael A.
    Silva, Vinicius D.
    Ferreira, Luciena S.
    Loureiro, Francisco J. A.
    Fagg, Duncan P.
    Macedo, Daniel A.
    Gomes, Uilame U.
    Soares, Marcio M.
    Gomes, Rodinei M.
    Morales, Marco A.
    MAGNETOCHEMISTRY, 2023, 9 (08)