APPROXIMATE CONTROLLABILITY OF FRACTIONAL EVOLUTION SYSTEMS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

被引:142
作者
Liu, Zhenhai [1 ,2 ]
Li, Xiuwen
机构
[1] Guangxi Univ Nationalities, Guangxi Key Lab Univ Optimizat Control & Engn Cal, Nanning 530006, Guangxi Provinc, Peoples R China
[2] Guangxi Univ Nationalities, Coll Sci, Nanning 530006, Guangxi Provinc, Peoples R China
关键词
approximate controllability; fractional evolution systems; Riemann-Liouville fractional derivatives; mild solutions; BOUNDARY-VALUE-PROBLEMS; DIFFERENTIAL-EQUATIONS; INTEGRODIFFERENTIAL EQUATIONS;
D O I
10.1137/120903853
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we deal with the control systems governed by fractional evolution differential equations involving Riemann-Liouville fractional derivatives in Banach spaces. Our main purpose in this article is to establish suitable assumptions to guarantee the existence and uniqueness results of mild solutions. Under these conditions, the approximate controllability of the associated fractional evolution systems involving Riemann-Liouville fractional derivatives is formulated and proved.
引用
收藏
页码:1920 / 1933
页数:14
相关论文
共 23 条
[1]   Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions [J].
Abada, Nadjet ;
Benchohra, Mouffak ;
Hammouche, Hadda .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (10) :3834-3863
[2]   On electromagnetic field in fractional space [J].
Baleanu, Dumitru ;
Golmankhaneh, Alireza K. ;
Golmankhaneh, Ali K. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) :288-292
[3]   On recent developments in the theory of abstract differential equations with fractional derivatives [J].
Hernandez, Eduardo ;
O'Regan, Donal ;
Balachandran, Krishnan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) :3462-3471
[4]   Controllability of Volterra-Fredholm type systems in Banach spaces [J].
Hernandez, Eduardo ;
O'Regan, Donal .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2009, 346 (02) :95-101
[5]   Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives [J].
Heymans, Nicole ;
Podlubny, Igor .
RHEOLOGICA ACTA, 2006, 45 (05) :765-771
[6]  
Kalman R E., 1963, Contributions to Differential Equations, V1, P190
[7]  
Kilbas A. A., 2006, North-holland mathematics studies, V204
[8]   Approximate controllability of fractional order semilinear systems with bounded delay [J].
Kumar, Surendra ;
Sukavanam, N. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6163-6174
[9]   Basic theory of fractional differential equations [J].
Lakshmikantham, V. ;
Vatsala, A. S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (08) :2677-2682
[10]   Monotone Iterative Technique for Riemann-Liouville Fractional Integro-Differential Equations with Advanced Arguments [J].
Liu, Zhenhai ;
Sun, Jihua ;
Szanto, Ivan .
RESULTS IN MATHEMATICS, 2013, 63 (3-4) :1277-1287