SOLITONS AND CONSERVED QUANTITIES OF THE ITO EQUATION

被引:0
作者
Ebadi, Ghodrat [1 ]
Kara, A. H. [2 ]
Petkovic, Marko D. [3 ]
Yildirim, Ahmet [4 ,5 ]
Biswas, Anjan [6 ]
机构
[1] Univ Tabriz, Fac Math Sci, Tabriz 5166614766, Iran
[2] Univ Witwatersrand, Sch Math, ZA-2050 Johannesburg, South Africa
[3] Univ Nis, Fac Sci & Math, Nish 18000, Serbia
[4] Ege Univ, Dept Math, TR-35100 Izmir, Turkey
[5] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[6] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2012年 / 13卷 / 03期
关键词
conserved quantities; solitary wave ansatz method; solitons; Ito integro-differential equation; G '/G method;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper obtains the soliton solutions of the Ito integro-differential equation. The G'/G method will be used to carry out the solutions of this equation and then the solitary wave ansatz method will be used to obtain a I-soliton solution of this equation. Finally, the invariance and multiplier approach will be applied to recover a few of the conserved quantities of this equation.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 6 条
[1]  
Biswas A, 2012, P ROMANIAN ACAD A, V13, P32
[2]  
CEASER A., 2010, APPL MATH COMPUT, V216, P241
[3]   Soliton solutions to a higher order Ito equation: Pfaffian technique [J].
Li, Chunxia ;
Zeng, Yunbo .
PHYSICS LETTERS A, 2007, 363 (1-2) :1-4
[4]   New exact solutions to the (2+1)-dimensional Ito equation: Extended homoclinic test technique [J].
Li, Dong-Long ;
Zhao, Jun-Xiao .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (05) :1968-1974
[5]   Hamiltonian structures for Ito's equation [J].
Liu, QP .
PHYSICS LETTERS A, 2000, 277 (01) :31-34