A classification of barycentrically associative polynomial functions

被引:4
|
作者
Marichal, Jean-Luc [1 ]
Mathonet, Pierre [2 ]
Tomaschek, Joerg [1 ]
机构
[1] FSTC Univ Luxembourg, Math Res Unit, L-1359 Luxembourg, Luxembourg
[2] Univ Liege, Dept Math, B-4000 Liege, Belgium
关键词
Barycentric associativity; decomposability; polynomial function; integral domain;
D O I
10.1007/s00010-014-0332-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the class of polynomial functions which are barycentrically associative over an infinite commutative integral domain.
引用
收藏
页码:1281 / 1291
页数:11
相关论文
共 50 条
  • [31] Axiomatizations of quasi-polynomial functions on bounded chains
    Couceiro, Miguel
    Marichal, Jean-Luc
    AEQUATIONES MATHEMATICAE, 2009, 78 (1-2) : 195 - 213
  • [32] Polynomial functions in the residue class rings of Dedekind domains
    Li, Xiumei
    Sha, Min
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (07) : 1473 - 1486
  • [33] An Adaptive Procedure for the Global Minimization of a Class of Polynomial Functions
    Favati, Paola
    Lotti, Grazia
    Menchi, Ornella
    Romani, Francesco
    ALGORITHMS, 2019, 12 (05):
  • [34] A theorem of Piccard's type and its applications to polynomial functions and convex functions of higher orders
    Jablonska, Eliza
    TOPOLOGY AND ITS APPLICATIONS, 2016, 209 : 46 - 55
  • [35] Quasi-polynomial functions over bounded distributive lattices
    Couceiro, Miguel
    Marichal, Jean-Luc
    AEQUATIONES MATHEMATICAE, 2010, 80 (03) : 319 - 334
  • [36] Modeling of an aluminum melting process using constructive polynomial functions
    Mohammadifard, Sara
    Stonis, Malte
    Langner, Jan
    Sauke, Sven-Olaf
    Khosravianarab, Farzaneh
    Harchegani, Hossein Larki
    Behrens, Bernd-Arno
    PRODUCTION ENGINEERING-RESEARCH AND DEVELOPMENT, 2018, 12 (05): : 679 - 689
  • [37] Solving the equality-constrained minimization problem of polynomial functions
    Xiao, Shuijing
    Zeng, Guangxing
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 75 (03) : 683 - 733
  • [38] Linear equation on polynomial single cycle T-functions
    Wang, Jin-Song
    Qi, Wen-Feng
    INFORMATION SECURITY AND CRYPTOLOGY, 2008, 4990 : 256 - 270
  • [39] Quasi-polynomial functions over bounded distributive lattices
    Miguel Couceiro
    Jean-Luc Marichal
    Aequationes mathematicae, 2010, 80 : 319 - 334
  • [40] Solving the equality-constrained minimization problem of polynomial functions
    Shuijing Xiao
    Guangxing Zeng
    Journal of Global Optimization, 2019, 75 : 683 - 733