Fabrication of graphene-silicon layered heterostructures by carbon penetration of silicon film

被引:4
作者
Meng, Lei [1 ,2 ,3 ]
Wang, Yeliang [2 ,3 ,4 ,5 ]
Li, Linfei [2 ,3 ,5 ]
Gao, H-J [2 ,3 ,4 ,5 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
[2] Inst Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Chinese Acad Sci, Beijing 100190, Peoples R China
[4] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
[5] Beijing Key Lab Nanomat & Nanodevices, Beijing 100190, Peoples R China
关键词
two-dimension; layered heterostructures; graphene; silicon; STM;
D O I
10.1088/1361-6528/aa53cf
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A new, easy, in situ technique for fabricating a two-dimensional graphene-silicon layered heterostructure has been developed to meet the demand for integration between graphene and silicon-based microelectronic technology. First, carbon atoms are stored in bulk iridium, and then silicon atoms are deposited onto the Ir(111) surface and annealed. With longer annealing times, the carbon atoms penetrate from the bulk iridium to the top of the silicon and eventually coalesce there into graphene islands. Atomically resolved scanning tunneling microscopy images, high-pass fast Fourier transform treatment and Raman spectroscopy demonstrate that the top graphene layer is intact and continuous, and beneath it is the silicon layer.
引用
收藏
页数:6
相关论文
共 31 条
  • [1] Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures
    Britnell, L.
    Gorbachev, R. V.
    Jalil, R.
    Belle, B. D.
    Schedin, F.
    Mishchenko, A.
    Georgiou, T.
    Katsnelson, M. I.
    Eaves, L.
    Morozov, S. V.
    Peres, N. M. R.
    Leist, J.
    Geim, A. K.
    Novoselov, K. S.
    Ponomarenko, L. A.
    [J]. SCIENCE, 2012, 335 (6071) : 947 - 950
  • [2] Graphene-Silicon Schottky Diodes
    Chen, Chun-Chung
    Aykol, Mehmet
    Chang, Chia-Chi
    Levi, A. F. J.
    Cronin, Stephen B.
    [J]. NANO LETTERS, 2011, 11 (05) : 1863 - 1867
  • [3] Tunable ground states in helical p-wave Josephson junctions
    Cheng, Qiang
    Zhang, Kunhua
    Yu, Dongyang
    Chen, Chongju
    Zhang, Yinhan
    Jin, Biao
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2016, 29 (07)
  • [4] Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices
    Dean, C. R.
    Wang, L.
    Maher, P.
    Forsythe, C.
    Ghahari, F.
    Gao, Y.
    Katoch, J.
    Ishigami, M.
    Moon, P.
    Koshino, M.
    Taniguchi, T.
    Watanabe, K.
    Shepard, K. L.
    Hone, J.
    Kim, P.
    [J]. NATURE, 2013, 497 (7451) : 598 - 602
  • [5] Fiori G, 2014, NAT NANOTECHNOL, V9, P768, DOI [10.1038/nnano.2014.207, 10.1038/NNANO.2014.207]
  • [6] Florian R O, 2015, NANOTECHNOLOGY, V26
  • [7] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    [J]. NATURE, 2013, 499 (7459) : 419 - 425
  • [8] Georgiou T, 2013, NAT NANOTECHNOL, V8, P100, DOI [10.1038/NNANO.2012.224, 10.1038/nnano.2012.224]
  • [9] Oxygen Intercalation under Graphene on Ir(111): Energetics, Kinetics, and the Role of Graphene Edges
    Granas, Elin
    Knudsen, Jan
    Schroeder, Ulrike A.
    Gerber, Timm
    Busse, Carsten
    Arman, Mohammad A.
    Schulte, Karina
    Andersen, Jesper N.
    Michely, Thomas
    [J]. ACS NANO, 2012, 6 (11) : 9951 - 9963
  • [10] Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy
    Hackley, J.
    Ali, D.
    DiPasquale, J.
    Demaree, J. D.
    Richardson, C. J. K.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (13)