A SIMPLE SYNCHRONIZATION SCHEME OF COULLET SYSTEMS WITH UNKNOWN PARAMETERS

被引:0
作者
Wang, Zuo-Lei [1 ,2 ]
Shi, Xue-Rong [2 ]
Jiang, Yaolin [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Yancheng Teachers Univ, Sch Math Sci, Yancheng 224002, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2014年 / 28卷 / 06期
基金
中国国家自然科学基金;
关键词
Synchronization; Coullet system; back stepping; Lyapunov function; ADAPTIVE SYNCHRONIZATION; CHAOTIC SYSTEMS; OPTIMIZATION; UNCERTAIN; FEEDBACK;
D O I
10.1142/S0217979214500210
中图分类号
O59 [应用物理学];
学科分类号
摘要
Synchronization of Coullet systems is investigated via back stepping method when parameters are unknown. A novel adaptive control scheme is presented, which contains a single controller. To achieve the synchronization of Coullet systems, sufficient conditions are derived and the unknown parameters are estimated. Finally, some numerical simulations are employed to verify the effectiveness of the proposed scheme.
引用
收藏
页数:7
相关论文
共 22 条
[1]   ASYMPTOTIC CHAOS [J].
ARNEODO, A ;
COULLET, PH ;
SPIEGEL, EA ;
TRESSER, C .
PHYSICA D, 1985, 14 (03) :327-347
[2]   Adaptive λ-tracking-control for relative degree two systems with application to bio-inspired sensors [J].
Behn, Carsten .
NONLINEAR DYNAMICS, 2007, 50 (04) :817-828
[3]   Stability analysis for the synchronization of chaotic systems with different order: application to secure communications [J].
Bowong, S .
PHYSICS LETTERS A, 2004, 326 (1-2) :102-113
[4]   Synchronizing strict-feedback and general strict-feedback chaotic systems via a single controller [J].
Chen, SH ;
Wang, F ;
Wang, CP .
CHAOS SOLITONS & FRACTALS, 2004, 20 (02) :235-243
[5]   TRANSITION TO STOCHASTICITY FOR A CLASS OF FORCED OSCILLATORS [J].
COULLET, P ;
TRESSER, C ;
ARNEODO, A .
PHYSICS LETTERS A, 1979, 72 (4-5) :268-270
[6]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[7]   Adaptive synchronization of a hyperchaotic system with uncertain parameter [J].
Elabbasy, E. M. ;
Agiza, H. N. ;
El-Dessoky, M. M. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (05) :1133-1142
[8]  
Ghosh D., COMMUN NONLIN SCI NU
[9]   Communication key using delay times in time-delayed chaos synchronization [J].
Kim, CM ;
Kye, WH ;
Rim, S ;
Lee, SY .
PHYSICS LETTERS A, 2004, 333 (3-4) :235-240
[10]   Anti-synchronization of two different chaotic systems [J].
Li, Wenlin ;
Chen, Xiuqin ;
Zhiping, Shen .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (14) :3747-3750