A Review of Two-Phase Forced Cooling in Three-Dimensional Stacked Electronics: Technology Integration

被引:49
作者
Green, Craig [1 ]
Kottke, Peter [1 ]
Han, Xuefei [1 ]
Woodrum, Casey [1 ]
Sarvey, Thomas [2 ]
Asrar, Pouya [1 ]
Zhang, Xuchen [2 ]
Joshi, Yogendra [1 ]
Fedorov, Andrei [1 ]
Sitaraman, Suresh [1 ]
Bakir, Muhannad [2 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
关键词
CRITICAL HEAT-FLUX; SILICON MULTI-MICROCHANNELS; PRESSURE-DROP; FLOW; REFRIGERANT; VISUALIZATION; INSTABILITY; PREDICTION; CHANNELS; SINK;
D O I
10.1115/1.4031481
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Three-dimensional (3D) stacked electronics present significant advantages from an electrical design perspective, ranging from shorter interconnect lengths to enabling heterogeneous integration. However, multitier stacking exacerbates an already difficult thermal problem. Localized hotspots within individual tiers can provide an additional challenge when the high heat flux region is buried within the stack. Numerous investigations have been launched in the previous decade seeking to develop cooling solutions that can be integrated within the 3D stack, allowing the cooling to scale with the number of tiers in the system. Two-phase cooling is of particular interest, because the associated reduced flow rates may allow reduction in pumping power, and the saturated temperature condition of the coolant may offer enhanced device temperature uniformity. This paper presents a review of the advances in two-phase forced cooling in the past decade, with a focus on the challenges of integrating the technology in high heat flux 3D systems. A holistic approach is applied, considering not only the thermal performance of standalone cooling strategies but also coolant selection, fluidic routing, packaging, and system reliability. Finally, a cohesive approach to thermal design of an evaporative cooling based heat sink developed by the authors is presented, taking into account all of the integration considerations discussed previously. The thermal design seeks to achieve the dissipation of very large (in excess of 500 W/cm(2)) background heat fluxes over a large 1 cm(-1) cm chip area, as well as extreme (in excess of 2 kW/cm(2)) hotspot heat fluxes over small 200 mu m x 200 mu m areas, employing a hybrid design strategy that combines a micropin-fin heat sink for background cooling as well as localized, ultrathin microgaps for hotspot cooling.
引用
收藏
页数:9
相关论文
共 64 条
[1]  
Agostini B, 2008, INT J HEAT MASS TRAN, V51, P5400, DOI 10.1016/j.ijheatmasstransfer.2008.03.006
[2]   High heat flux flow boiling in silicon multi-microchannels - Part II: Heat transfer characteristics of refrigerant R245fa [J].
Agostini, Bruno ;
Thome, John Richard ;
Fabbri, Matteo ;
Michel, Bruno ;
Calmi, Daniele ;
Kloter, Urs .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (21-22) :5415-5425
[3]   A comparative study of flow boiling heat transfer and pressure drop characteristics in microgap and microchannel heat sink and an evaluation of microgap heat sink for hotspot mitigation [J].
Alam, Tamanna ;
Lee, Poh Seng ;
Yap, Christopher R. ;
Jin, Liwen .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 58 (1-2) :335-347
[4]   Experimental investigation of local flow boiling heat transfer and pressure drop characteristics in microgap channel [J].
Alam, Tamanna ;
Lee, Poh Seng ;
Yap, Christopher R. ;
Jin, Liwen .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2012, 42 :164-174
[5]  
[Anonymous], 2002, FCHART SOFTWARE
[6]  
Bar-Cohen A., 2013, CS MANTECH C, P171
[7]   On the nature of critical heat flux in microchannels [J].
Bergles, AE ;
Kandlikar, SG .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2005, 127 (01) :101-107
[8]   Experimental investigation of non-uniform heating effect on flow boiling instabilities in a microchannel-based heat sink [J].
Bogojevic, D. ;
Sefiane, K. ;
Walton, A. J. ;
Lin, H. ;
Cummins, G. ;
Kenning, D. B. R. ;
Karayiannis, T. G. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (03) :309-324
[9]   Two-phase flow instabilities in a silicon microchannels heat sink [J].
Bogojevic, D. ;
Sefiane, K. ;
Walton, A. J. ;
Lin, H. ;
Cummins, G. .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2009, 30 (05) :854-867
[10]   Ozone depletion and global warming: Case for the use of natural refrigerant - a review [J].
Bolaji, B. O. ;
Huan, Z. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 18 :49-54