A genetic linkage map with 178 SSR and 1 901 SNP markers constructed using a RIL population in wheat (Triticum aestivum L.)

被引:5
作者
Zhai Hui-jie [1 ]
Feng Zhi-yu [1 ]
Liu Xin-ye [1 ]
Cheng Xue-jiao [1 ]
Peng Hui-ru [1 ]
Yao Ying-yin [1 ]
Sun Qi-xin [1 ]
Ni Zhong-fu [1 ]
机构
[1] China Agr Univ, Natl Plant Gene Res Ctr Beijing,Minist Agr,Key La, Beijing Key Lab Crop Genet Improvement,Minist Edu, State Key Lab Agrobiotechnol,Key Lab Crop Heteros, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
wheat; genetic linkage map; SNP; SSR; unigene; deletion bin-mapped ESTs; QUANTITATIVE TRAIT LOCI; BREAD WHEAT; MICROSATELLITE; DIVERSITY; SELECTION; YIELD;
D O I
10.1016/S2095-3119(14)60902-3
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The construction of high density genetic linkage map provides a powerful tool to detect and map quantitative trait loci (QTLs) controlling agronomically important traits. In this study, simple sequence repeat (SSR) markers and II lumina 9K iSelect single nucleotide polymorphism (SNP) genechip were employed to construct one genetic linkage map of common wheat (Triticum aestivum L.) using 191 recombinant inbred lines (RILs) derived from cross Yu 8679xJing 411. This map included 1 901 SNP loci and 178 SSR loci, covering 1 659.9 cM and 1 000 marker bins, with an average interval distance of 1.66 cM. A, B and D genomes covered 719.1, 703.5 and 237.3 cM, with an average interval distance of 1.66, 1.45 and 2.9 cM, respectively. Notably, the genetic linkage map covered 20 chromosomes, with the exception of chromosome 5D. Bioinformatics analysis revealed that 1 754 (92.27%) of 1 901 mapped SNP loci could be aligned to 1 215 distinct wheat unigenes, among which 1 184 (97.4%) were located on one single chromosome, and the rest 31 (2.6%) were located on 2 to 3 chromosomes. By performing in silica comparison, 214 chromosome deletion bin-mapped expressed sequence tags (ESTs), 1 043 Brachypodium genes and 1 033 rice genes were further added onto the genetic linkage map. This map not only integrated genetic and physical maps, SSR and SNP loci, respectively, but also provided the information of Bra chypodium and rice genes corresponding to 1 754 SNP loci. Therefore, it will be a useful tool for comparative genomics analysis, fine mapping of QTL/gene controlling agronomically important traits and marker-assisted selection breeding in wheat.
引用
收藏
页码:1697 / 1705
页数:9
相关论文
共 29 条
[1]   The Inhibitor of wax 1 locus (Iw1) prevents formation of - and OH--diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS [J].
Adamski, Nikolai M. ;
Bush, Maxwell S. ;
Simmonds, James ;
Turner, Adrian S. ;
Mugford, Sarah G. ;
Jones, Alan ;
Findlay, Kim ;
Pedentchouk, Nikolai ;
von Wettstein-Knowles, Penny ;
Uauy, Cristobal .
PLANT JOURNAL, 2013, 74 (06) :989-1002
[2]   Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay [J].
Akhunov, Eduard ;
Nicolet, Charles ;
Dvorak, Jan .
THEORETICAL AND APPLIED GENETICS, 2009, 119 (03) :507-517
[3]   Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars [J].
Cavanagh, Colin R. ;
Chao, Shiaoman ;
Wang, Shichen ;
Huang, Bevan Emma ;
Stephen, Stuart ;
Kiani, Seifollah ;
Forrest, Kerrie ;
Saintenac, Cyrille ;
Brown-Guedira, Gina L. ;
Akhunova, Alina ;
See, Deven ;
Bai, Guihua ;
Pumphrey, Michael ;
Tomar, Luxmi ;
Wong, Debbie ;
Kong, Stephan ;
Reynolds, Matthew ;
da Silva, Marta Lopez ;
Bockelman, Harold ;
Talbert, Luther ;
Anderson, James A. ;
Dreisigacker, Susanne ;
Baenziger, Stephen ;
Carter, Arron ;
Korzun, Viktor ;
Morrell, Peter Laurent ;
Dubcovsky, Jorge ;
Morell, Matthew K. ;
Sorrells, Mark E. ;
Hayden, Matthew J. ;
Akhunov, Eduard .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (20) :8057-8062
[4]   Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.) [J].
Cuthbert, Janice L. ;
Somers, Daryl J. ;
Brule-Babel, Anita L. ;
Brown, P. Douglas ;
Crow, Gary H. .
THEORETICAL AND APPLIED GENETICS, 2008, 117 (04) :595-608
[5]   Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids [J].
Gasperini, Debora ;
Greenland, Andy ;
Hedden, Peter ;
Dreos, Rene ;
Harwood, Wendy ;
Griffiths, Simon .
JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (12) :4419-4436
[6]   Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat [J].
Golabadi, M. ;
Arzani, A. ;
Maibody, S. A. M. Mirmohammadi ;
Tabatabaei, B. E. Sayed ;
Mohammadi, S. A. .
EUPHYTICA, 2011, 177 (02) :207-221
[7]   Genetic Diversity and Linkage Disequilibrium in Chinese Bread Wheat (Triticum aestivum L.) Revealed by SSR Markers [J].
Hao, Chenyang ;
Wang, Lanfen ;
Ge, Hongmei ;
Dong, Yuchen ;
Zhang, Xueyong .
PLOS ONE, 2011, 6 (02)
[8]   Epigenetic silencing of transposable elements: A trade-off between reduced transposition and deleterious effects on neighboring gene expression [J].
Hollister, Jesse D. ;
Gaut, Brandon S. .
GENOME RESEARCH, 2009, 19 (08) :1419-1428
[9]   Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat [J].
Kippes, Nestor ;
Zhu, Jie ;
Chen, Andrew ;
Vanzetti, Leonardo ;
Lukaszewski, Adam ;
Nishida, Hidetaka ;
Kato, Kenji ;
Dvorak, Jan ;
Dubcovsky, Jorge .
MOLECULAR GENETICS AND GENOMICS, 2014, 289 (01) :47-62
[10]  
Kosambi D. D., 1944, ANN EUGENICS, V12, P172