Stabilization of Asymptotically Time-Invariant Linear Time-Varying Systems

被引:0
作者
Sun, Yuli [1 ]
Chi, Wei [1 ]
Xiao, Jinmei [1 ]
Yu, Tianqiu [1 ]
机构
[1] Heilongjiang Univ, Sch Math Sci, Harbin 150080, Peoples R China
来源
2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA) | 2014年
关键词
asymptotically time-invariant systems; stabilization; fredholm operators; coprime factorizations; TOPOLOGICAL STABLE RANK; NEST-ALGEBRAS; OPERATORS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the stabilization problem of asymptotically time-invariant linear time-varying systems within the framework of nest algebras. The main theorem of the paper establishes that an asymptotically time-invariant system is stabilizable if and only if the time-invariant part is also stabilizable. The proof relies on the theory of Fredholm and compact operators. In particular, when the compact part of systems are strictly causal, we show that a controller (possibly time-varying) stabilizes system if and only if it stabilizes the time-invariant part.
引用
收藏
页码:3881 / 3885
页数:5
相关论文
共 15 条
[1]   SPECTRAL AND FREDHOLM PROPERTIES OF OPERATORS IN ELEMENTARY NEST-ALGEBRAS [J].
BARNES, BA ;
CLAUSS, JM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (05) :1735-1741
[2]   ASYMPTOTIC TOEPLITZ-OPERATORS [J].
BARRIA, J ;
HALMOS, PR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 273 (02) :621-630
[3]  
Davidson K.R., 1988, NEST ALGEBRAS
[4]   Topological stable rank of nest algebras [J].
Davidson, Kenneth R. ;
Ji, You Qing .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2009, 98 :652-678
[5]   On strong stabilization for linear time-varying systems [J].
Feintuch, A .
SYSTEMS & CONTROL LETTERS, 2005, 54 (11) :1091-1095
[6]  
Feintuch A., 1982, SYATEM THEORY HILBER
[7]  
Feintuch A., 1998, Robust Control Theory in Hilbert Space
[8]   On strong stabilization for linear continuous time time-varying systems [J].
Feintuch, Avraham .
SYSTEMS & CONTROL LETTERS, 2008, 57 (09) :691-695
[9]   On strong stabilization of asymptotically time-invariant linear time-varying systems [J].
Feintuch, Avraham .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2011, 22 (03) :229-243
[10]  
Gohberg I., 1990, CLASSES LINEAR OPERA, V1