Least-squares solutions of inverse problem for Hermitian generalized Hamiltonian matrices

被引:7
作者
Zhang, ZZ [1 ]
Hu, XY
Zhang, L
机构
[1] Hunan City Univ, Dept Math, Yiyang, Peoples R China
[2] Cent S Univ, Sch Math Sci, Changsha, Peoples R China
[3] Hunan Univ, Fac Math & Econometr, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
ceneralized Hamiltonian matrices; Hermitian generalized Hamiltonian matrices; optimal approximation; least-square solution;
D O I
10.1016/S0893-9659(04)90067-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider least-square solutions of inverse problem for Hermitian generalized Hamiltonian matrices and their optimal approximation. We obtain a general expression of the least-square solution by using the singular value decomposition method. For any n x n complex matrix, we derive the representation of its unique optimal approximation in the least-square solutions set. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:303 / 308
页数:6
相关论文
共 8 条
[1]   POSITIVE SEMIDEFINITE MATRICES - CHARACTERIZATION VIA CONICAL HULLS AND LEAST-SQUARES SOLUTION OF A MATRIX EQUATION [J].
ALLWRIGHT, JC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (03) :537-556
[3]  
Golub G.H., 2013, Matrix Computations, V4th
[4]   LEAST-SQUARES SOLUTIONS OF AN INCONSISTENT SINGULAR EQUATION AX+XB=C [J].
LOVASSNAGY, V ;
POWERS, DL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (01) :84-88
[5]  
Sun Ji-guang, 1988, Mathematica Numerica Sinica, V10, P282
[6]   Least-squares solution of F=PG over positive semidefinite symmetric P [J].
Woodgate, KG .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 245 :171-190
[7]  
XIE DX, 2000, MATH NUMER SIN, V1, P29
[8]  
张磊, 1993, [数学物理学报. A辑, Acta Mathematica Scientia], V13, P94