Observing single quantum trajectories of a superconducting quantum bit

被引:298
作者
Murch, K. W. [1 ,2 ]
Weber, S. J. [1 ]
Macklin, C. [1 ]
Siddiqi, I. [1 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Quantum Nanoelect Lab, Berkeley, CA 94720 USA
[2] Washington Univ, Dept Phys, St Louis, MO 63130 USA
关键词
CURRENT SITUATION; NOISE; AMPLIFICATION; MECHANICS; FEEDBACK; COLLAPSE; QUBIT; SPIN;
D O I
10.1038/nature12539
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluctuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture-a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a 'quantum trajectory'(1,2) determined by the measurement outcome. Here we use weak measurements to monitor a microwave cavity containing a superconducting quantum bit (qubit), and track the individual quantum trajectories(3) of the system. In this setup, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier(4,5), we selectively measure either the phase or the amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We perform quantum state tomography at discrete times along the trajectory to verify that we have faithfully tracked the state of the quantum system as it diffuses on the surface of the Bloch sphere. Our results demonstrate that decoherence can be mitigated by environmental monitoring, and validate the foundation of quantum feedback approaches based on Bayesian statistics(6-8). Moreover, our experiments suggest a new means of implementing 'quantum steering'(9)-the harnessing of action at a distance to manipulate quantum states through measurement.
引用
收藏
页码:211 / 214
页数:4
相关论文
共 32 条
  • [1] Dispersive regime of circuit QED: Photon-dependent qubit dephasing and relaxation rates
    Boissonneault, Maxime
    Gambetta, J. M.
    Blais, Alexandre
    [J]. PHYSICAL REVIEW A, 2009, 79 (01):
  • [2] Persistent Control of a Superconducting Qubit by Stroboscopic Measurement Feedback
    Campagne-Ibarcq, P.
    Flurin, E.
    Roch, N.
    Darson, D.
    Morfin, P.
    Mirrahimi, M.
    Devoret, M. H.
    Mallet, F.
    Huard, B.
    [J]. PHYSICAL REVIEW X, 2013, 3 (02):
  • [3] Carmichael H., 1993, OPEN SYSTEMS APPROAC
  • [4] Carmichael H. J., 1994, P INT S COH STAT PRE, P75
  • [5] Amplification and squeezing of quantum noise with a tunable Josephson metamaterial
    Castellanos-Beltran, M. A.
    Irwin, K. D.
    Hilton, G. C.
    Vale, L. R.
    Lehnert, K. W.
    [J]. NATURE PHYSICS, 2008, 4 (12) : 929 - 931
  • [6] QUANTUM LIMITS ON NOISE IN LINEAR-AMPLIFIERS
    CAVES, CM
    [J]. PHYSICAL REVIEW D, 1982, 26 (08): : 1817 - 1839
  • [7] Introduction to quantum noise, measurement, and amplification
    Clerk, A. A.
    Devoret, M. H.
    Girvin, S. M.
    Marquardt, Florian
    Schoelkopf, R. J.
    [J]. REVIEWS OF MODERN PHYSICS, 2010, 82 (02) : 1155 - 1208
  • [8] Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect
    Gambetta, Jay
    Blais, Alexandre
    Boissonneault, M.
    Houck, A. A.
    Schuster, D. I.
    Girvin, S. M.
    [J]. PHYSICAL REVIEW A, 2008, 77 (01)
  • [9] Partial-Measurement Backaction and Nonclassical Weak Values in a Superconducting Circuit
    Groen, J. P.
    Riste, D.
    Tornberg, L.
    Cramer, J.
    de Groot, P. C.
    Picot, T.
    Johansson, G.
    DiCarlo, L.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (09)
  • [10] Progressive field-state collapse and quantum non-demolition photon counting
    Guerlin, Christine
    Bernu, Julien
    Deleglise, Samuel
    Sayrin, Clement
    Gleyzes, Sebastien
    Kuhr, Stefan
    Brune, Michel
    Raimond, Jean-Michel
    Haroche, Serge
    [J]. NATURE, 2007, 448 (7156) : 889 - U1