TiO2 Surface Engineering to Improve Nanostability: The Role of Interface Segregation

被引:27
作者
da Silva, Andre L. [1 ]
Muche, Dereck N. F. [2 ,3 ]
Caliman, Lorena B. [1 ]
Bettini, Jefferson [5 ]
Castro, Ricardo H. R. [2 ,3 ]
Navrotsky, Alexandra [3 ,4 ]
Gouvea, Douglas [1 ]
机构
[1] Univ Sao Paulo, Polytech Sch, Dept Met & Mat Engn, BR-05508030 Sao Paulo, Brazil
[2] Univ Calif Davis, Dept Mat Sci & Engn, One Shields Ave, Davis, CA 95616 USA
[3] Univ Calif Davis, NEAT ORU, One Shields Ave, Davis, CA 95616 USA
[4] Univ Calif Davis, Peter A Rock Thermochem Lab, One Shields Ave, Davis, CA 95616 USA
[5] Brazilian Nanotechnol Natl Lab LNNano, Rua Giuseppe Maximo Scolfa Ro 10000, BR-13083100 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
GRAIN-BOUNDARY EXCESS; TEMPERATURE SYNTHESIS; STABILITY; NANOPARTICLES; ENERGIES; ANATASE; WATER; ADSORPTION; DIOXIDE; NANOCRYSTALS;
D O I
10.1021/acs.jpcc.8b12160
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanoparticle stability against coarsening is one of the keys to allow better exploitation of the properties of nanoscale materials. The intrinsically high interfacial energies of nanoparticles constitute the driving force for coarsening, and therefore can serve as targets to design materials with improved thermal stability. In this study, we discuss the surface engineering of TiO2 nanocatalysts for artificial photosynthesis by exploiting the spontaneous segregation of Ba2+ ions to the interfaces of TiO2 nanocrystals. Ba' is a strong candidate for photoelectrocatalytic reduction of CO, and its effects on interfacial energies lead to a remarkable increase in thermal stability. By using a systematic lixiviation method, we quantified the Ba2+ content located at both the surface and at grain boundary interfaces and combined with microstructural studies to demonstrate that Ba2+ excess quantities meta-equilibrium configurations defined by the Ba2+ content and s establish the fundamental framework for the design of ultrastable direct calorimetric measurements of surface energies and directly impact coarsening of TiO2 nanocatalysts by creating egregation potentials at each individual interface. The results nanocatalysts.
引用
收藏
页码:4949 / 4960
页数:12
相关论文
共 50 条
  • [21] The role of the surface acidic/basic centers and redox sites on TiO2 in the photocatalytic CO2 reduction
    Collado, Laura
    Renones, Patricia
    Fermoso, Javier
    Fresno, Fernando
    Garrido, Leoncio
    Perez-Dieste, Virginia
    Escudero, Carlos
    Hernandez-Alonso, Maria D.
    Coronado, Juan M.
    Serrano, David P.
    de la Pena O'Shea, Victor A.
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 303
  • [22] Regulation of the rutile/anatase TiO2 heterophase interface by Ni12P5 to improve photocatalytic hydrogen evolution
    Qiu, Chengwei
    Lin, Jinjin
    Shen, Jinni
    Liu, Dan
    Zhang, Zizhong
    Lin, Huaxiang
    Wang, Xuxu
    CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (11) : 3709 - 3719
  • [23] Structure of a model TiO2 photocatalytic interface
    Hussain, H.
    Tocci, G.
    Woolcot, T.
    Torrelles, X.
    Pang, C. L.
    Humphrey, D. S.
    Yim, C. M.
    Grinter, D. C.
    Cabailh, G.
    Bikondoa, O.
    Lindsay, R.
    Zegenhagen, J.
    Michaelides, A.
    Thornton, G.
    NATURE MATERIALS, 2017, 16 (04) : 461 - +
  • [24] Surface treatment of TiO2 nanoparticles to improve dispersion in non-polar solvents
    Jalili, Mohammad Mehdi
    Davoudi, Kaveh
    Sedigh, Erfan Zafarmand
    Farrokhpay, Saeed
    ADVANCED POWDER TECHNOLOGY, 2016, 27 (05) : 2168 - 2174
  • [25] Enhanced cyclability of CdS/TiO2 photocatalyst by stable interface structure
    He, Duliang
    Chen, Mindong
    Teng, Fei
    Li, Guiqing
    Shi, Huaxia
    Wang, Jun
    Xu, Mengjiao
    Lu, Tianyun
    Ji, Xuequn
    Lv, Yingjie
    Zhu, Yongfa
    SUPERLATTICES AND MICROSTRUCTURES, 2012, 51 (06) : 799 - 808
  • [26] Morphology engineering of nanostructured TiO2 particles
    Zha, Ruhua
    Nadimicherla, Reddeppa
    Guo, Xin
    RSC ADVANCES, 2015, 5 (09): : 6481 - 6488
  • [27] Surface Engineering of TiO2 Nanosheets to Boost Photocatalytic Methanol Dehydrogenation for Hydrogen Evolution
    Yu, Fengyang
    Wang, Xiaohua
    Lu, Haiyue
    Li, Gen
    Liao, Baicheng
    Wang, Hanqing
    Duan, Chunying
    Mao, Yu
    Chen, Liyong
    INORGANIC CHEMISTRY, 2023, 62 (14) : 5700 - 5706
  • [28] Pd segregation to the surface of Au on Pd(111) and on Pd/TiO2(110)
    Sharpe, Ryan
    Counsell, Jon
    Bowker, Michael
    SURFACE SCIENCE, 2017, 656 : 60 - 65
  • [29] Role of surface reconstruction on Cu/TiO2 nanotubes for CO2 conversion
    Liu, Chao
    Nauert, Scott L.
    Alsina, Marco A.
    Wang, Dingdi
    Grant, Alexander
    He, Kai
    Weitz, Eric
    Nolan, Michael
    Gray, Kimberly A.
    Notestein, Justin M.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 255
  • [30] Surface dehydroxylation of nanocrystalline TiO2
    Korina, Elena
    Morozov, Roman
    Arkhipushkin, Ivan
    Vorobiev, Dmitriy
    Heintz, Natalya
    Inyaev, Igor
    Adawy, Alaa
    Mendoza, Rafael
    Vasileva, Irina
    Dolinina, Tatiana
    Avdin, Vyacheslav
    Sozykin, Sergey
    Schelokov, Artyom
    Popov, Vadim
    Strel'tsova, Elena
    Bol'shakov, Oleg
    INORGANIC CHEMISTRY COMMUNICATIONS, 2021, 126