Convex cycle bases

被引:6
作者
Hellmuth, Marc [1 ]
Leydold, Josef [2 ]
Stadler, Peter F. [3 ,4 ,5 ,6 ,7 ,8 ,9 ]
机构
[1] Univ Saarland, Ctr Bioinformat, D-66041 Saarbrucken, Germany
[2] WU, Inst Stat & Math, A-1090 Vienna, Austria
[3] Univ Leipzig, Bioinformat Grp, Dept Comp Sci, D-04107 Leipzig, Germany
[4] Univ Leipzig, Interdisciplinary Ctr Bioinformat, D-04107 Leipzig, Germany
[5] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[6] Fraunhofer Inst Zelltherapie & Immunol, D-04103 Leipzig, Germany
[7] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
[8] Univ Copenhagen, Ctr Noncoding RNA Technol & Hlth, DK-1870 Frederiksberg, Denmark
[9] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
cycle basis; convex subgraph; isometric subgraph; Cartesian product; partial cubes; ALGORITHMS; PATHS; SETS;
D O I
10.26493/1855-3974.226.0a2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Convex cycles play a role e.g. in the context of product graphs. We introduce convex cycle bases and describe a polynomial-time algorithm that recognizes whether a given graph has a convex cycle basis and provides an explicit construction in the positive case. Relations between convex cycles bases and other types of cycles bases are discussed. In particular we show that if G has a unique minimal cycle bases, this basis is convex. Furthermore, we characterize a class of graphs with convex cycles bases that includes partial cubes and hence median graphs.
引用
收藏
页码:123 / 140
页数:18
相关论文
共 47 条
  • [1] [Anonymous], 2011, DISCRETE MATH APPL
  • [2] Counterexamples in chemical ring perception
    Berger, F
    Flamm, C
    Gleiss, PM
    Leydold, J
    Stadler, PF
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (02): : 323 - 331
  • [3] Minimum cycle bases for network graphs
    Berger, F
    Gritzmann, P
    de Vries, S
    [J]. ALGORITHMICA, 2004, 40 (01) : 51 - 62
  • [4] Characterizing almost-median graphs
    Bresar, Bostjan
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (03) : 916 - 920
  • [5] ON THE NULL-HOMOTOPY OF GRAPHS
    CHAMPETIER, C
    [J]. DISCRETE MATHEMATICS, 1987, 64 (01) : 97 - 98
  • [6] Convexities related to path properties on graphs
    Changat, M
    Mulder, HM
    Sierksma, G
    [J]. DISCRETE MATHEMATICS, 2005, 290 (2-3) : 117 - 131
  • [7] The all-paths transit function of a graph
    Changat, M
    Klavzar, S
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (02) : 439 - 448
  • [8] Changat M., 2010, RAMANUJAN MATH SOC L, V5
  • [9] Triangle path transit functions, betweenness and pseudo-modular graphs
    Changat, Manoj
    Prasanth, G. N.
    Mathews, Joseph
    [J]. DISCRETE MATHEMATICS, 2009, 309 (06) : 1575 - 1583
  • [10] CHEN WK, 1971, SIAM J APPL MATH, V20, P525