Reduced finite element discretizations of the Stokes and Navier-stokes equations

被引:0
作者
Knobloch, P [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Numer Math, Prague 18675 8, Czech Republic
关键词
convergence; finite element method; Navier-Stokes equations; Stokes equations;
D O I
10.1080/01630560600569999
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If finite element spaces for the velocity and pressure do not satisfy the Babuska-Brezzi condition, a stable conforming discretization of the Stokes or Navier-Stokes equations can be obtained by enriching the velocity space by suitable functions. Writing any function from the enriched space as a sum of a function from the original space and a function from the supplementary space, the discretization will contain a number of additional terms compared with a conforming discretization for the original pair of spaces. We show that not all these terms are necessary for the solvability of the discrete problem and for optimal convergence properties of the discrete solutions, which is useful for saving computer memory and for establishing a connection to stabilized methods.
引用
收藏
页码:161 / 187
页数:27
相关论文
共 17 条
[1]  
Arnold D. N., 1984, Calcolo, V21, P337, DOI 10.1007/BF02576171
[2]  
BERNARDI C, 1985, MATH COMPUT, V44, P71, DOI 10.1090/S0025-5718-1985-0771031-7
[3]   OPTIMAL FINITE-ELEMENT INTERPOLATION ON CURVED DOMAINS [J].
BERNARDI, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (05) :1212-1240
[4]   Coupling of Navier-Stokes equations and heat - The model and its approximation using the finite-element method [J].
Bernardi, C ;
Metivet, B ;
PernaudThomas, B .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (07) :871-921
[5]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .1. BRANCHES OF NONSINGULAR SOLUTIONS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :1-25
[6]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[7]  
Ciarlet P.G., 1991, HDB NUMERICAL ANAL 1, P17, DOI DOI 10.1016/S1570-8659(05)80039-0
[8]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33
[9]   ON FINITE-ELEMENT APPROXIMATIONS OF PROBLEMS HAVING INHOMOGENEOUS ESSENTIAL BOUNDARY-CONDITIONS [J].
FIX, GJ ;
GUNZBURGER, MD ;
PETERSON, JS .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1983, 9 (05) :687-700